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Acceptance of the theory of evolution as 
the means of explaining observed similar- 
ities and differences among organisms 
invites the construction of trees of descent 
purporting to show evolutionary relation- 
ships. Whether such trees are based on 
fossil or living specimens, they may often 
be criticized for having a high subjective 
element. The purpose of this paper is to 
show how suitable evolutionary models 
can be constructed and applied objectively. 
In it we amplify and extend the methods 
we have given in previous communications 
(Edwards and Cavalli-Sforza, 1963a, b, 
1964, 1965; Cavalli-Sforza and Edwards, 
1964, 1966; Cavalli-Sforza, Barrai and 
Edwards, 1964; Cavalli-Sforza, 1966). 

Considering the great variety of informa- 
tion provided by living organisms, it is 
clear that the type of data will affect both 
the method of treatment and the validity 
of the results: the higher the correlation 
of data and genotype, the greater is the 
validity likely to be. Information on nu- 
cleic acid and protein structure comes first 
in the scale of relevance, and that on 
phenotypic measurements last; discrete and 
continuous variation demand different 
treatments, and evolutionary models ap- 
propriate to both cases will therefore be 
required for estimation purposes. Differ- 
ences which are the result of mutation are 
formally discrete, and evolution a t  the 
molecular level thus needs discontinuous 
treatment; but even in this case the limit 
of observation may turn the data into the 
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continuous type, as happens, for instance, 
when the similarity in nucleotide sequences 
in the nucleic acids of two organisms is 
measured by hybridization techniques, or 
when differences between closely-related 
organisms are examined. In the latter case 
the differences may be sufficiently small to 
suggest that the analysis be carried out a t  
the level of gene frequencies, semi-continu- 
ous variables which may be treated as con- 
tinuous. We will be especially concerned 
to develop the continuous treatment, the 
discontinuous one being more easily ob- 
tained, in a parallel manner. 

In addition to the relevance of the data, 
the validity of the derived evolutionary 
tree will be strongly dependent on the cor- 
rectness of the evolutionary model used 
as the basis for estimation. This will be 
limited, first because the dynamics of evo- 
lution is not fully understood, secondly be- 
cause the values of some parameters (such 
as selective coefficients) are unknown, or 
known with low accuracy, and thirdly be- 
cause there are mathematical and tech- 
nical limitations as to how complex the 
model can be. 

Although data suitable for our type of 
evolutionary study may seem to be largely 
taxonomic, it should be noted that the aim 
of this work is not the same as that of 
taxonomy, as the word is normally under- 
stood (see Edwards and Cavalli-Sforza, 
1964) ; in particular, ‘‘numerical taxon- 
omy” (Sokal and Sneath, 1963) is not 
primarily concerned with phylogeny, and 
the fact that the techniques to be described 
here and those of numerical taxonomy both 
involve the treatment of “taxonomic” data 
should not be allowed to mask the differ- 
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FIG. 1. An evolutionary tree and its projection onto the “now” plane. 

ences between them, either a t  the logical 
or methodological levels. 

EVOLUTION AS A BRANCHING PROCESS 

Evolution can only be described in terms 
of the characters that are changing, and 
it is convenient to represent such changes 
in a multidimensional character-space in 
which each population occupies a position 
determined by the values of the characters 
it exhibits. In  this paper the word “popu- 
lation” will be used to denote one of the 
group whose diversity is under study; it 
might refer to a species, a race, or even a 
single organism. 

If a time dimension, everywhere normal 
to the character-space, is added, the course 
of evolution (were it but known) could be 
seen as a tree, whose branches split as 
populations diverge, unite as they hy- 
bridize, and end as they become extinct. 
Living populations would be represented 
by the intercept of the tree and the “now” 
plane (Fig. 1). In the case of discontinu- 
ous characters, the character-space would 
consist of a lattice of points, but to regard 

it as continuous will often be a good 
enough approximation, as indicated earlier. 
Data, such as gene frequencies or other 
measurements, will be represented by points 
in the space-time of Figure I ,  and the 
problem of tracing evolutionary history 
will be that of fitting a suitable tree to 
these points. I t  may be noted, however, 
that information from the past is in prac- 
tice available only for data which in other 
respects are less satisfactory than gene 
frequencies since their genetic basis is very 
imperfectly known, as is the case with 
osteometric data. But with gene frequen- 
cies data are only available, in general, 
for living populations, so that points will 
be restricted to the “now” plane. With 
such data we may only be able to recon- 
struct a projection of the tree onto the 
“now” plane (Fig. 1 ), in which case com- 
plete information on the position of the 
first split will not be preserved. Recon- 
struction of the tree in space and time will 
be possible, however, if we are willing to 
make hypotheses about the mode and 
speed of evolution. 
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Our genetic reasoning will be almost en- 
tirely confined to the analysis of gene 
frequencies among present-day populations, 
though it is clearly possible to extend it to 
other cases. In particular, once methods 
have been set up for estimating the course 
of evolution from present-day data, they 
can be extended without difficulty to in- 
clude data from the past. Such an exten- 
sion involves no logical jump and little 
increase in mathematical complexity. 

The proper basis for the study of evolu- 
tionary divergence will be provided by the 
transformation of the space-time which 
makes a unit vector, in whatever direction 
(normal to time) and in whatever part of 
the space, correspond to the amount of 
evolutionary change expected in unit time. 
Such a transformed space-time will be 
homogeneous and isotropic with respect to 
evolutionary progress; in some problems 
it may not be Euclidean, or it may not 
even be possible to formulate the problem 
in geometrical terms, but the Euclidean 
representation is the simplest possible, and 
will suffice for the development of the 
argument. The correct transformation will, 
of course, depend on the evolutionary 
model and the type of data available, and 
in the case of gene frequencies will be 
treated below. 

THE GENETIC BASIS 
Of the major evolutionary forces-muta- 

tion, migration, selection, and drift-we 
shall not incorporate the first two into 
our model. Mutation pressure is known 
to be usually very small compared with 
other pressures, so that its neglect, or its 
confounding with the other pressures, is 
reasonable: we are not here concerned 
with mutation in its role as the source of 
variation. Migration need not be consid- 
ered at  all if the evolving populations have 
differentiated past the specific stage; but 
this will not be true in most of the cases 
in which gene frequencies are useful, and 
its omission may be a source of error. We 
can, however, justify this practice: On 
the one hand, small migration rates will 

act essentially as almost-random distur- 
bances partially buffering the variation due 
to random drift, so that the omission of 
migration of this magnitude is only ap- 
parent; on the other hand, large migration 
rates must appear only as rare accidents 
in a given evolutionary tree, and a “migra- 
tional accident,” such as the fusion, par- 
tial or whole, of two populations, would 
give rise to a loop in Figure 1. The major 
difficulty in extending the analysis to in- 
clude such loops is that they bring about 
an enormous increase in the number of 
possible trees to be examined. If, how- 
ever, one or two loops are known, or as- 
sumed, to have taken place a t  given times 
and between given populations, their con- 
sideration may be practicable, although it 
will not be attempted in this paper. 

Random genetic drift is the name given 
to the variation in gene frequencies which 
inevitably accompanies the formation of 
the next generation, depending, as it  does, 
on a sample of genes from the former gen- 
eration. Ignoring other sources of varia- 
tion, in statistical terms this corresponds 
to a random walk of the gene frequencies 
in time. Whenever a population splits, the 
two branches will independently undergo 
random walks which will give rise to 
divergence between them, generally in- 
creasing with increasing time since branch- 
ing. The rate of the random walk will de- 
pend on the size of the population in 
question (Wright’s “effective breeding 
size”) and the mating structure. The 
smaller the population, the greater the 
random variation, and thus the faster the 
random walk. 

Under a suitable transformation this rate 
will be independent of the particular gene 
considered: the variance of a gene fre- 
quency p due to drift is approximately 
p ( 1 - p )  ( l - ~ ~ ’ * ~ ‘ ) ,  where N is the ef- 
fective size of the population and t the 
time elapsed in generations (Kimura, 
1955). For estimation purposes, this can 
be made nearly independent of p by means 
of the angular transformation p = sin2 8, 
the variance of 0 then being approximately 
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FIG. 2. The same tree as in Figure 1, but with the addition of directional selection constant in 
space but not time, indicated by arrows. The evolutionary paths without selection (broken lines) are 
translated into new paths (solid lines) without affecting the relative positions of the populations. 

(1 - e-‘/2”)/4 (see Fisher, 1958). When 
2N is large compared with t ,  this variance 
reduces nearly to t/8N. 

In recent papers (Cavalli-Sforza, Barrai 
and Edwards, 1964; Cavalli-Sforza, 1966) 
we have given some reasons why we be- 
lieve that random drift is likely to be more 
important than formerly believed in de- 
termining the variation in gene frequencies 
in man, and similar considerations may 
be applied to other organisms. 

Selection may be constant in space and 
time, or may vary in one or the other or 
both. If selection is constant in space it 
gives rise to a shift in the gene frequencies 
of all the populations studied (directional 
selection, Fig. 2 ) .  I t  would be detected 
as a trend in the gene frequencies if data 
from the past were available, but it is not, 
by definition, a cause of differentiation be- 
tween populations, and is not detectable 
in data solely from present-day popula- 
tions. 

Variable selection, however, is probably 
a major factor in causing divergence. If 
the variation is sufficiently rapid and hap- 
hazard, Kimura’s (1954) model of “selec- 
tive drift” will be appropriate. This model 
gives rise to a variation in gene frequencies 
which is almost indistinguishable from the 
effects of random genetic drift, apart from 
the behavior at  extreme gene frequencies 
(0 or 1 ) . Thus the consequence of “selec- 
tive drift” will also be a fluctuation of 
gene frequencies akin to a random walk, 
with rate depending on the variability of 
the selective coefficients. The intensity of 
this variation will be a property of the gene 
concerned. If selection is of the stabilizing 
kind, such as in heterozygotic advantage, 
it will cause a reduction in the variance of 
gene frequencies, and its effect will be more 
or less inextricably confounded with that 
of random drift. 

Prolonged periods of selection peculiar 
to individual populations will not be de- 
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tectable without data from the past, and 
no method of phylogenetic analysis can 
alter the fact that any observed diversity 
can be explained by any evolutionary tree 
provided we are willing to postulate the 
necessary selection. Our methods invoke 
no such specific postulates, although if 
other evidence on selection in a particular 
population is available it should of course 
be taken into account. As we shall see, 
there are not enough degrees of freedom 
to estimate selection specific to individual 
populations. 

To sum up, selective trends will be de- 
tectable only if data from the past are 
available. Random drift will create a 
random walk of the gene frequencies, to 
which selective drift will add, and sta- 
bilizing selection subtract, speed. If major 
and sudden shifts in gene frequency have 
occurred, because of large selective acci- 
dents or other bottlenecks in population 
development, they will be a source of in- 
accuracy in the analysis, although their 
presence may be detectable as departures 
from expectation indicated by the goodness- 
of-fit of the models we have developed. 
The whole problem of the robustness of 
our methods with respect to varying forms 
of selection, migration, and other depar- 
tures from the simple model, may best be 
studied by Monte Carlo methods, trees 
being generated according to specific hy- 
potheses, and the estimated forms com- 
pared with the known ones. 

THE STATISTICAL BASIS 

We have given reasons above why the 
variation in gene frequencies of each pop- 
ulation may be represented by a random 
walk. To keep the model as simple as 
possible, it will be supposed that no popu- 
lation becomes extinct, that a t  each split 
the daughter populations are both identical 
to their parent, and that each population 
is independent of every other one. We shall 
now examine the statistical assumptions 
underlying the methods of analysis. 

We need hypotheses on the mode of 
splitting of populations and on the proper- 

ties of the random walks in the individual 
branches of the evolutionary tree. The first 
type of hypothesis will affect only the 
form of the tree, while the second will 
affect its dimensions as well; both form 
and dimensions requiring to be estimated. 
As we shall see, the number of forms in- 
creases very fast with the number of popu- 
lations. Depending on this number, we 
shall either test all possible forms or limit 
our analysis to a group of promising ones. 

Given a particular form, the optimum 
tree may perhaps be estimated by maxi- 
mum likelihood, or some other method, and 
the choice between forms will then de- 
pend on a comparison of their likelihoods 
or other appropriate criteria. The simplest 
model for splitting, which we shall use 
here, is that in which it occurs a t  random, 
as in a Yule process (Yule, 1924): When 
there are n populations each is assumed 
to have equal probability, in a given time 
interval, of generating the (n + 1)th. On 
this basis the probabilities of the different 
forms may be written down explicitly when 
n is fairly small, and such probabilities will 
be used, where possible, as prior probabil- 
ities in the estimation procedure. The tech- 
nique for enumeration is to generate the 
possible “topologies” (that is, tree forms 
irrespective of the placings of the popula- 
tions on the terminal branches) for n pop- 
ulations from those for t z -  1 by allowing 
each terminal branch to split in turn, 
keeping track of the probabilities. The 
labelled populations are then distributed on 
the terminal branches in all possible dis- 
tinct ways for each topology, each arrange- 
ment having equal probability for a given 
topology, and the final probability of each 
form thus calculated. This procedure will 
be clarified in the example to be given 
below. The calculation of the probabilities 
for large n has been considered by Harding 
( 1967). 

The properties to be assumed for the 
random walk depend directly on the bio- 
logical assumptions. Using the transforma- 
tion of the gene frequencies given above 
(which will later be generalized to the 
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multi-allelic case), the distribution of the 
transformed variates will be approximately 
Gaussian with variance proportional to 
the time elapsed, while the mean will be 
constant in the absence of directional se- 
lection. We have already decided not to 
consider individual directional selection of 
a prolonged nature, and directional selec- 
tion which is the same for all populations 
at  any given time will not affect their rela- 
tive movements, as has been indicated 
above, and therefore need not be consid- 
ered, although it must be remembered that 
any inference about the gene frequencies 
in an earlier population will be based on 
its presumed absence. Thus the random 
walk of the gene frequencies may be re- 
garded as a Brownian-motion or Wiener 
process in the transformed space. 

Various models of increasing complexity 
can be imagined which could, under ideal 
conditions, be fitted in succession to the 
data, stopping at  the lowest level necessary 
for a good fit: 

1) The simplest model is one in which 
the Brownian motion has a constant rate 
which is the same for all characters at  all 
times. This represents the case in which 
random drift alone determines the varia- 
tion in gene frequencies, and population 
size and structure are taken to be constant. 

2 )  The Brownian motion does not have 
the same rate for all characters. A simple 
transformation of the scale of each char- 
acter to standardize the variances will al- 
low us to include selective drift among the 
evolutionary forces considered, in addition 
to random drift, since selective drift causes 
the variances of characters to differ one 
from another. Stabilizing selection will be 
confounded with selective drift and thus 
also included. As an improvement on 
simply transforming the scales, the vari- 
ances can themselves be estimated simul- 
taneously with the estimation of the tree. 

3)  The Brownian motion is not con- 
stant in time. If it varied randomly, owing 
to random fluctuations in population size, 
this could be taken into account. 
4) If nothing is known about the prob- 

ability distributions of selective coefficients 
or population sizes, we may restrict the 
assumptions to that of the independence 
of events in individual populations, thus 
retaining the idea of Brownian motion due 
to the combined effect of random and selec- 
tive drift, but with no knowledge of local 
variations in its rate. 

We have worked out three essentially 
different methods. The first is estimation 
based on the method of maximum likeli- 
hood applied to specific models; we have 
fully developed this approach for model 
(1) and in outline for model (Z), though, 
of the two, only the former will be de- 
scribed in this paper. Model (3)  awaits 
treatment by maximum likelihood, but 
model (4) cannot be handled in this way 
owing to the lack of information on the 
probability distributions of selective co- 
efficients and population sizes. Indeed, as 
has been mentioned above, model (4) can- 
not be treated rigorously by any method. 

The second method is the “method of 
minimum evolution” (Edwards and Cavalli- 
Sforza, 1963a), which uses the intuitive 
idea that a plausible estimate of the pro- 
jection of the evolutionary tree onto the 
“now” plane is given by that tree which 
invokes the minimum total amount of 
evolution (see Fig. 1). The assumptions 
underlying this method are not too clear; 
it may go some way towards handling 
model (4),  but its success is probably due 
to the closeness of the solution it gives to 
the projection of the “maximum-likelihood” 
tree. The extent of the similarity merits 
further investigation, and experience with 
simulated trees should clarify its logical 
status. It certainly cannot be justified on 
the grounds that evolution proceeds ac- 
cording to some minimum principle, as re- 
cently suggested by Camin and Sokal 
(1965) when they applied it to the discrete 
case. I ts  success with discrete data (see 
also Zuckerkandl, 1965) must also be at- 
tributed to its closeness to the solution 
which a proper probability model would 
give. 
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A B C D 
FIG. 3. Model for the “additive” tree, showing 

expected branch lengths. 

Our third method may be called that 
of the “additive tree” (Cavalli-Sforza and 
Edwards, 1964). I t  assumes that distances 
along the tree are additive, thus implying 
independence of evolution in all the 
branches. For example, in Figure 3, the 
evolutionary distance between population 
A and the last common ancestor of popula- 
tions A and B is called x ,  and that be- 
tween population B and the same ancestor, 
y;  it is then assumed that the observed 
distance between A and B, dAB, is an esti- 
mate of x + y. For this tree we can thus 
set up six equations: 

dAB = x + y + “error” 
d,c = x + z + o + “error” 
d,D = x + z + w + “error” 
dBc = y + z + o + “error” 
dBD = y + z + w + “error” 
dcD = o + w + “error.” 

The “error” terms represent the departures 
of the observed from the expected dis- 
tances, and a method of estimation of o, 
w ,  x ,  y, and z is to minimize the sum of 
the squared errors-the method of least 
squares. 

There is no trunk to the tree of Figure 
3 because it is impossible to obtain infor- 
mation on the first split, as in the method 
of minimum evolution, and the branch cor- 
responding to z is therefore represented by 
a single line. The tree obtained in this way 
cannot be represented in the character 
space, as may be seen by considering the 
case of three populations, each a distance 
d from the other. The three-branched 
least-squares tree (which has zero residual 
sum of squares) has branches each of 

and 

length d / 2 ,  which do not meet if they are 
supposed to extend inwards from the ver- 
tices of an equilateral triangle of side d .  
They could be made to meet by imposing 
the appropriate restriction, but this would 
upset the simplicity of the estimation pro- 
cedure, and has not been tried. The method 
does not, therefore, estimate the positions 
of nodes, either in time or space; but it 
has the advantage that it can be applied 
to distances which cannot be represented 
in a metric space. Apart from the assump- 
tion of independence in the separate 
branches, the justification of this method 
seems to be much the same as that of the 
method of minimum evolution, considered 
above. 

DETAILS OF THE METHODOLOGY 
Number of tree forms.-It has been 

noted above that the number of tree forms 
increases very rapidly with increasing n, 
the number of populations. The number 
of forms is in fact 3.5.7 . . . ( 2 n - 3 )  = 
(2n  - 3 )  ! / [  2n-2(n - 2 )  ! ] when the first 
split can be recognized. Such a tree has 
2n - 1 branches (including the trunk) so 
that, in progressing from a tree with n -  1 
populations to one with n, the new branch 
may be inserted in any one of 2 (n - 1 ) - 1 
= 2n - 3 places. At n = 10 this number 
is 34,459,425. When there is no informa- 
tion about the first split, there is no trunk, 
and the number of forms is reduced to 
3.5.7 . . . (2n - 5 ) ,  giving 2,027,025 for 
n =  10. 

I t  is interesting to note, in passing, that 
the number of “topologies” (tree forms 
irrespective of the placings of the popula- 
tions on the terminal branches) is given, 
for trees with trunks, by a,,, where 

a, = a1a,-1+ a 2 a n - 2  + . . . + 
+ a(n-1)/2a(n+1)/2 ( n  odd) 

and a, = ala,-l + a2an-2 + . . . + 
+ ?4an/2(an/2 + 1 )  (n even). 

This solution is derived by considering the 
number of ways a tree can be constructed 
by uniting smaller trees at  their trunks, 
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and follows Polya (1937); similar prob- 
lems had been considered by Cayley ( 1857, 
1859) in connection with the number of 
ways brackets can be inserted in an alge- 
braic expression. We find alo = 98. 

With such large numbers it is thus im- 
portant, when there are more than seven 
or eight populations, to have methods of 
generating promising forms for estimation. 
We use several somewhat intuitive methods 
(in the hope that they corroborate each 
other), and then use the forms so found, 
and similar ones, as a basis for metric esti- 
mation, the final choice being according 
to whatever criterion, such as likelihood, 
is appropriate. 

Choice of promising forms.-Intuitively 
it is reasonable to suppose that present- 
day populations near to each other in the 
character space should be clustered to- 
gether on the same part of the evolutionary 
tree, so that methods of clustering points 
should give some insight into the most 
promising form. Among the methods used, 
one (Edwards and Cavalli-Sforza, 19633, 
1965; see also Ward, 1963) divides the 
populations into the two clusters for which 
the between-clusters sum of squares is a 
maximum, and each cluster is then sim- 
ilarly treated, and so on until a complete 
breakdown of the original cluster has been 
made. 

Apart from this method, we have used 
two others especially well-suited to the ap- 
plication of the method of minimum evolu- 
tion. The first is based on a theorem due 
to Prim (1957), who showed that when 
branches are constrained to meet only at  
populations, the net of shortest length may 
be found by listing all the pairwise dis- 
tances between populations in order of as- 
cending magnitude and allocating branches 
successively to these distances, omitting 
any branch which completes a loop. The 
resulting net is the shortest net conditional 
on each node coinciding with one of the 
populations; removing the constraint, the 
net may be shortened step by step, as de- 
scribed below. The second method uses 
the same iterative procedure, but starting 

from the case in which all the nodes coin- 
cide at  a single point, so chosen that the 
total length is then a minimum. 

In the absence of a means of maximizing 
likelihood over different tree forms, these 
methods have shown promise of leading to 
near-optimal forms. The last two do not, 
however, give any indication of the posi- 
tion of the first split, so that several posi- 
tions must be tried. 

Transformation of data.-We will con- 
centrate on populations of nonhaploid or- 
ganisms, whose evolution is suitably stud- 
ied by way of continuous data, be they 
gene frequencies or metrical characters. 
We have mentioned the usefulness of the 
angular transformation of gene frequencies, 
whereby the variances are standardized ir- 
respective of the frequencies themselves (at  
least in the interval 0.05 to 0.95). I t  was 
pointed out by Fisher (personal communi- 
cation; see also Cavalli-Sforza and Con- 
terio, 1959) that this transformation could 
be generalized to multi-allelic loci, as fol- 
lows. 

If each of m alleles a t  the locus is 
allotted a Cartesian axis in a Euclidean 
space of m dimensions, and a population 
with gene frequencies p 1 ,  p 2 ,  . . . p ,  is rep- 
resented by the vector (g& d& . . . VK), 
then the space of possible populations is 
the %"th part of the surface of the unit 
hypersphere in which all the coordinates 
are non-negative, the population being 
represented by a point unit distance from 
the origin with direction cosines given by 
the above vector (Fig. 4) .  I t  follows that 
the angular distance between two popula- 
tions with gene frequencies p1 , p 2 ,  . . . p ,  
and PI', p2', . . . p,' is given by 8 where 

cos 8 = 2 dprpi . Since 8 = ~ / 2  corre- 
sponds to a complete gene substitution, it 
is convenient to work in terms of 28/r, 
where 8 is in radians, for the unit distance 
is then one gene substitution. 

In  this representation a population may 
be thought of as pursuing a random walk 
in the curved space. Since this space if. 
finite, with known bounds, the Gaussiar 

t n -  

4 x 1  
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FIG. 4. Representation of a population, with gene frequencies pl, p2,  p s  at a single triallelic locus, on 
the octant of a sphere. 

approximation to the gene frequency dis- 
tribution will only hold if the variance is 
sufficiently small and the population suf- 
ficiently far removed from an edge of the 
space for edge effects to be neglected. The 
method of maximum likelihood could 
ideally now be applied to a model based 
on this transformation of the data, the 
log-likelihoods being summed over loci, 
but it turns out to be intractable owing 
to the curved space and difficulties with 
the coordinate system, so that it is neces- 
sary to approximate the curved space in 
the region of the populations by a Euclid- 
ean space of (m - 1) dimensions by means 
of a projection of one onto the other. An 
orthogonal projection onto the hyperplane 
tangent to the hypersphere at the centroid 
of the populations should suffice, although 
in the present work we have simply used, 
as the distance between two populations 
an arc 26/~ apart, the length of the 
chord joining them, which is ( Z ~ ? / T )  

(dl - cos 0) .  Thus the m-dimensional Eu- 
clidean space in which the hypersphere is 
embedded has itself been employed. 

These Euclidean spaces for the separate 
loci (assumed unlinked) may then be com- 
bined, distances being given by Pythagoras’ 
theorem in many dimensions, so that the 
square of the distance between two popula- 
tions is given by the sum of the squared 
distances for each locus. In  this way the 
data are represented in a Euclidean space, 
the scale of which is one unit per gene 
substitution. 

Another type of continuous data of some 
interest is that in which measurements can 
only be made directly on the pairwise dis- 
tances between populations. Such is the 
case, for instance, when “immunological” 
distances between populations are investi- 
gated by serological methods, or when dif- 
ferences in nucleotide sequences are esti- 
mated using hybridization procedures with 
nucleic acids. In these cases, data consist 
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FIG. 5. Representation of the four populations in Euclidean space, showing the Prim network. 

of a triangular matrix of the pairwise dis- 
tances between populations, which is also 
the form to which multi-locus gene fre- 
quency data has been reduced by the 
methods described above. But whereas in 
the latter case the erection of a Cartesian 
coordinate system in Euclidean space 
by repeated applications of Pythagoras’ 
theorem is bound to succeed, in the 
former case it will often fail, the method 
then generating complex numbers. But 
even if a nonlinear scale transformation 
allowing Euclidean representation cannot 
be found, the procedures for cluster anal- 
ysis and for finding an “additive tree” by 
least squares may still be applied. One 
advantageous by-product of generating co- 

ordinates from the pairwise distances is 
that the maximum number of dimensions 
required is one less than the number of 
populations, however many characters (and 
hence dimensions) there were originally. 

The case of ordinary metrical characters 
has been treated only to a very limited ex- 
tent because of the difficulties in inter- 
preting their genetic basis. We considered 
them when analyzing anthropometric data 
in one of the earlier papers (Cavalli-Sforza 
and Edwards, 1964), but the results were 
not very encouraging. It seems that the 
best procedure is to transform the original 
characters into a set of uncorrelated stan- 
dardized variables, using the within-popula- 
tions dispersion matrix (see, for example, 
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Rao, 1952). The lack of the complete 
matrix for the data just mentioned must 
have contributed to the unsatisfactory na- 
ture of the solution. 

Estimation based on maximum likeli- 
hood.-In Euclidean space of p dimensions, 
the probability density a distance d from 
an original population after a time t has 
elapsed is (l/uy/2nt)P exp(-d2/2tu2), ow- 
ing to the Gaussian nature of the random 
walk, where u2 is the variance per unit 
time. The log-likelihood of a branch of 
length d and interval t is therefore -(d2/ 
2 t 2  + %p.log 2ta2 + ?+.log T). Writing 
T for 2 t 2  (time and variance being con- 
founded in their product, as is to be ex- 
pected), omitting the constant and chang- 
ing the sign, this becomes dZ/T + 
%p.log T.  

Let xir be the yth spatial coordinate of 
the it” node (or population) and t6 its 
time coordinate, measured backwards from 
the “now” plane. For the branch joining 
nodes i and j ( t i  > t i )  the above expres- 
sion then becomes 

2 (xjr-xir)2/( t j - t i )  + ?4p.log ( t j - t i ) .  (1) 

Summing over all the branches (denoted 
by (i, j ) ) ,  the quantity to be minimized is 

L =  S [ S ( x j r - ~ i r ) ~ / ( t j - t i ) ]  + 
( t , J )  I 

+ W p  8 log ( t i -  t i ) .  (2) 

If j ,  k,  and 1 are the three nodes (or, in 
the case of k and 2, possibly populations) 
connected by single branches to node i 
( t i  > ti > tk, t z ) ,  then 

%-=- 

( 4 ,  j )  

aL x i r - x j r  I xir - Xkr ~ xir - Str 

= O .  (3) 

Each node yields a similar equation linear 
in the x.,., the net result being a system of 
linear equations which enables the yth spa- 
tial coordinates of the nodes to be expressed 
in terms of the rtlr spatial coordinates of 
the populations and the time coordinates 
of the nodes, by inverting a matrix which 

ax+, t j -  ti t i -  tk t i -  tl 

is the same for each dimension. Assuming 
initial values for the time coordinates, the 
numerical values thus found can be in- 
serted in the first and second partial deriva- 
tives of L with respect to the l’s (these 
will not be quoted explicitly, but may be 
immediately written down from ( 2 )  ), 
giving the scores and the information 
matrix. Corrections to the t ’s  are found 
in the usual way, and the cycle repeated. 
By means of this reduction of the likeli- 
hood equations the order of the informa- 
tion matrix shrinks from (n - l )  ( p  + l )  to 
( n -  1 ) .  

In order to begin iteration, initial esti- 
mates of the t’s are required, and these 
may be found from cluster analysis. Con- 
sidering two populations a t  time T = 0 a 
distance d apart, the maximum-likelihood 
estimate of the time coordinate of the sub- 
tending node is d2/2p, while the variance 
of the two-population cluster is @/4. Put- 
ting the time coordinate of the subtending 
node equal to 2/p times the variance of 
the cluster, of however many populations, 
thus provides a rough estimate. 

It may be noted that of the n ( p  + 1) 
original degrees of freedom (n - 1 )  ( p  + 1 )  
are used in estimating the parameters, 
leaving ( p  + 1) .  If it is not assumed that 
the variance of the random walks is the 
same in each direction, ( p  - 1) relative 
variances must also be estimated, leaving 
two degrees of freedom for a goodness-of- 
fit test. There are not sufficient degrees of 
freedom to estimate covariances as well, 
although these will be small if the original 
data have been transformed into uncor- 
related variables using the between-popula- 
tions dispersion matrix. 

Unfortunately, except in the very sim- 
plest cases, this straightforward applica- 
tion of the method of maximum likelihood 
leads into difficulties due to the fact that 
the likelihood surface contains singularities, 
as may be seen from the following example 
(Cavalli-Sforza and Edwards, 1966). Since 
the log-likelihood of the tree is found by 
summing the log-likelihoods of the individ- 
ual branches, each node should, in the final 
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solution, be in the maximum-likelihood po- 
sition with respect to the three adjacent 
nodes if these are regarded as fixed. In 
particular, given the positions and times of 
the second and third splits, those of the 
first should be determinable. Let us there- 
fore consider the simple case of the deter- 
mination of the origin of a Brownian-mo- 
tion process when we have observed just 
two different populations: at  time t l  popu- 
lation 1 was a t  xl, and at  time t 2  population 
2 was a t  x 2 .  Let the origin of the process, 
which we are required to estimate, be at  
( X ,  T ) .  The quantity to be minimized is, 
from equation ( 2 )  above, 

( X - x l y  + ( x - x 2 ) 2  + 
L =  T-ti T - t 2  

+ % log ( T -  t i )  + ?4 log ( T -  t 2 ) .  (4) 

This surface can be plotted for varying 
X and T ,  but it is already obvious that it 
contains an unfortunate characteristic: 
suppose t l  > t z  (so that population 1 is 
earlier in time, which, it may be remem- 
bered, is being measured backwards), and 
suppose that we trace the path X -  XI= 

T - t l  along the surface towards (xl, t l ) .  
Then the first term in L will tend to zero, 
the second will tend to the constant (xl - 
x2)'/(tl- t 2 ) ,  but the third will become 
indefinitely large and negative as T ap- 
proaches tl, although the fourth will tend 
to Y2 log (t l  - t 2 )  . Thus, provided the two 
observations were not made simultaneously, 
in which case t l  = t2 ,  the negative log- 
likelihood can be made as large and nega- 
tive as we please, and hence the log-likeli- 
hood as large as we please, simply by let- 
ting the origin approach the first observa- 
tion along a certain path; the surface con- 
tains, in fact, a singularity a t  the point 
(XI, t l ) ,  and any iterative procedure, un- 
less it is started near a well-behaved peak 
elsewhere in the surface, will lead to the 
coincidence of the origin with the first ob- 
servation. I t  is convergence to such singu- 
larities which has led to the trivial solutions 
obtained when studying complete trees. 

Needless to say, such solutions are intui- 
tively unacceptable, although this is not 
the place to consider in detail the prob- 
lems of inference which they expose. Short 
of portraying the entire likelihood surface, 
which is impossible owing to the number 
of parameters involved, there is no fully 
satisfactory solution. 

However, we have developed another 
approach which seems to us to be moder- 
ately satisfactory. Recalling that, given 
the time coordinates, the spatial coordi- 
nates of the nodes can be found by maxi- 
mum likelihood without difficulty, the 
problem can be solved by finding the time 
coordinates by another method. One such 
method has already been given above, but 
it was intended only as an initial approxi- 
mation. We now propose to fit, according 
to the least-squares criterion, the observed 
length squared of each branch to its ex- 
pected squared length derived from the 
interval between its ends. On the Gaussian 
model this expected squared length is 
easily seen to be the interval itself. 

We therefore minimize, in the notation 
of equations 1 to 3, 

S =  8 [ S ( x j r - ~ i ~ ) ~ - ( t l - t i ) ] ~ ,  ( 5 )  
( 6 . j )  I 

with respect to the t., the time coordinates 
of the nodes. Differentiating with respect 
to t i ,  

- 8  ( ~ i r - ~ l r ) ~  + 3 t i - t j - t k - t l  

= 0 .  (6) 
Each node yields a similar equation linear 
in the t , ,  enabling them to be expressed in 
terms of the x. . by inverting a matrix. The 
values thus obtained are used in the method 
of maximum likelihood to generate new 
spatial coordinates for the nodes (equation 
3 above), and the cycle repeated until 
convergence is attained. The procedure 
amounts to the iterative solution of two 
sets of equations exemplified by 3 and 6 
above, and is a generalization of that pro- 
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TABLE 1. Blood-group gene frequencies charm- 
terizing four populations. 

A1 
Aa 
B 
0 

CDE 
CDe 
cDE 
cDe 
Cde 
cdE 
cde 

Eskimo 

0.2914 
0.0 
0.0316 
0.6770 

0.0 
0.4985 
0.4906 
0.0109 
0.0 
0.0 
0.0 

Bantu 

0.1034 
0.0866 
0.1200 
0.6900 

0.0 
0.1400 
0.0100 
0.6000 
0.0200 
0.0 
0.2300 

English 

0.2090 
0.0696 
0.0612 
0.6602 

0.0024 
0.4205 
0.1411 
0.0257 
0.0098 
0.0119 
0.3886 

Korean 

0.2208 
0.0 
0.2069 
0.5723 

0.0082 
0.6197 
0.3148 
0.0573 
0.0 
0.0 
0.0 

MS 0.1719 0.0900 0.2377 0.0245 
Ms 0.6703 0.4800 0.3048 0.4615 
NS 0 .o 0.0400 0.0703 0.0646 
NS 0.1578 0.3900 0.3872 0.4494 

FY‘ 0.7500 0.0600 0.4213 0.9950 
Fyb 0.2500 0.9400 0.5787 0.0050 

Di‘ 0.0 0.0 0.0 0.0313 
Dib 1 .o 1 .o 1 .o 0.9687 

posed by Cavalli-Sforza and Edwards 
(1966) to solve the two-population example 
considered earlier. 

Having had to invoke the method of 
least-squares for reasons of expediency, it 
is necessary to defend the decision not to 
solve the problem entirely by this method 
(maximizing S with respect to the spatial 
as well as the time coordinates of the 
nodes), but rather to rely on a hybrid be- 
tween least-squares and maximum-likeli- 
hood. We retain the method of maximum 
likelihood because 

1) We prefer it as a method of estima- 
tion where it does not break down; 

2 )  I t  is more tractable in the present 
case, as may be seen by differentiating 
equation 5 with respect to the x.  .; 

3) Likelihood provides a more useful 
criterion of acceptability than the residual 
sum of squares, as it may be directly com- 
pounded with prior probabilities. 

Although it is very probable, it  remains 
to be shown formally that the least-squares 
solution converges to the local maximum of 
the likelihood in well-behaved examples 

where the singularities may be discarded, 
and it will be worthwhile to try the full 
maximum-likelihood procedure using the 
estimates obtained by the above procedure 
as starting values. 

I t  has been pointed out to us by D. G. 
Kendall and D. F. Kerridge (separate 
personal communications) that, in writing 
down the likelihood of a tree, we have 
omitted the contribution due to the “Pois- 
son” nature of the Yule process. If we 
knew that n, and only n, populations could 
have been produced by the process, then 
the likelihood surface for the times of the 
splits would indeed be uniform, as we 
have supposed. But this is not really our 
model: In fact, by using a Yule process, 
we admit the possibility that numbers other 
than n could have been generated on the 
same model. The likelihood surface, con- 
ditional on n, is then easily seen to be pro- 
portional to e-Axta, where 8tt is the sum of 
the times of the nodes and A is the rate of 
the process. The question arises, however, 
of whether even this is the appropriate 
model, for we have not in fact observed 
a tree with exactly n populations, but 
rather we have chosen to observe n from 
a tree which may have had more. The like- 
lihood surface for the nodes of a tree with 
n populations which have been chosen at 
random from a randomly-generated tree 
with m (m 2 n) populations appears to 
be unknown. I t  may even be uniform. 

However, even the use of the likelihood 
e-xxta would not affect our argument, for 
it would weight the likelihood in favor of 
still shorter times for the branch lengths, 
thus aggravating rather than alleviating 
the problem of the singularities. Recourse 
to the least-squares modification would 
still be necessary, and, since the likelihood 
is only used to derive the spatial coordi- 
nates for given times, the addition of the 
quantity -A8tf to the log-likelihood would 
not affect the estimates. I t  would, of 
course, affect the likelihood comparisons 
of different tree forms, though since we 
do not know A, and cannot estimate it by 
maximum likelihood, and since we are in 
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TABLE 2. Gene substitutions separating four populations, measured along the arc ( 2 0 / ~ )  and along 
the chord ([2v?/rl\/T-cose). 

A,&BO Rh MNSs FY Di Combined 

Eskimo arc 0.2585 0.7274 0.2222 0.5091 0.0 - - 
Bantu chord 0.2568 0.6886 0.2211 0.4957 0.0 0.9136 

Eskimo arc 0.1822 0.4718 0.2852 0.2170 0.0 - 
- 

English chord 0.1816 0.4611 0.2828 0.2159 0.0 0.6101 

Eskimo arc 0.1874 0.1461 0.3050 0.2883 0.1132 - 

Korean chord 0.1868 0.1457 0.3021 0.2858 0.1131 0.4918 

Bantu arc 0.1094 0.4907 0.1554 0.2922 0.0 

English chord 0.1092 0.4787 0.1549 0.2896 0.0 0.5907 

Bantu arc 0.2270 0.6398 0.1024 0.7974 0.1132 - 

Korean chord 0.2258 0.6132 0.1023 0.6871 0.1131 1.0036 

English arc 0.2178 0.4465 0.2293 0.5052 0.1132 - 

Korean chord 0.2167 0.4374 0.2280 0.4921 0.1131 0.7384 

- 

- 
- 

- 

- 

any case not certain of the model, we have 
omitted it in the following example. 

I t  should be noted that, in the foregoing 
argument, if the ti are in units of 2 2  ac- 
cording to our standard notation, A is in 
units of 1/20?, so that it is the expression 
h/2a2 that is really relevant. 

Estimation by  the method of minimum 
evolution.-The method of minimum evo- 
lution (Edwards and Cavalli-Sforza, 1963~)  
uses the intuitive idea that a plausible esti- 
mate of the projection of the evolutionary 
tree onto the “now” plane is given by that 
tree uniting all the populations which in- 
vokes the minimum total amount of evolu- 
tion. With suitably transformed scales, a 
unit quantity of evolution is a unit vector 
in this space, and therefore the required 
tree is that with the minimum total length 
possible. As has been mentioned, the posi- 
tion of the first split is undefined in the 
projection, and, of course, the method of 
minimum evolution gives no information 
on the time coordinates of the nodes. 

The problem of finding the minimum- 
length tree may be referred to its the 
Steiner problem in p dimensions (see Cour- 

ant and Robbins, 1960), and no algorism 
for its general solution is available, al- 
though various things are known. For ex- 
ample, it may be proved that, in any num- 
ber of dimensions, each node must be the 
meet of just three branches mutually in- 
clined a t  120’, unless the node coincides 
with a population. It follows that, for 
a given tree form, a computer program 
may be written which will converge to the 
Steiner tree for that fmm, because if any 
two intersecting branches meet a t  an angle 
of less than 120’ they may be replaced by 
a Y-shaped “Steiner triplet” whose inter- 
branch angles are 120°, the total length 
thus being shortened. Unless the tree form 
is close to the optimum, however, many 
branches will converge to zero length, but 
this fact may be used to give an indication 
of how the form can be improved. A 
Steiner tree with no branches of zero 
length (except those generated by nodes 
coinciding with populations) may be called 
“stable.” There will usually be many 
stable nets for a given configuration of 
populations, so that stability itself is no 
guarantee that the minimum net has been 



564 L. L. CAVALLI-SFORZA AND A. W. F. EDWARDS 

TABLE 3. Coordinates of the four populations. 

x Y Z 

Eskimo 0.0 0.0 0.0 
Bantu 0.9136 0.0 0.0 
English 0.4695 0.3895 0.0 
Korean 0.0379 0.0428 0.4885 

found, and, as with other methods, many 
different forms must be investigated. 

As indicated on page 557 above, we can 
try the form derived from Prim’s network 
by calculating all the interbranch angles, 
and replacing the two branches subtending 
the smallest angle by the Steiner triplet, 
and so on, treating the angles in order of 
increasing size. Alternatively, we can pro- 
ceed in the same way starting with all the 
nodes coinciding a t  a central point so 
chosen that the total length is then a mini- 
mum. 

Since the method seeks the tree of mini- 
mum length, this length is the criterion of 
acceptability, akin to likelihood on the full 
model, but the relation between these two 
quantities needs further study. A more 
detailed account of these methods for solv- 
ing Steiner’s problem in p dimensions is 
given by Edwards (1967). 

Estimation on the additive tree model. 
-If D is the column vector of the %n* 
( n  - 1) pairwise distances between popu- 
lations, W the column vector of the 2n- 2 
branch lengths to be estimated, and B 
the %n(n - 1 )  X (2n - 2 )  matrix specify- 
ing the form of the tree, in which the 
element in the rth row and tth column is 
1 if the path uniting the rth pair of popu- 
lations includes the ctl’ branch, and 0 
otherwise, then the least-squares estimate 
of W is given by W =  (B*B)-’B*D, 
where B* is the transpose of B. Thus the 
corresponding expected value of D is D = 
BW, the residual sum of squares is D*. 
(D - D) and it follows that the variance- 
covariance matrix of w is D * ( D - D ) .  
(B*B)-’/[%(n-l)(n-4)]. If the errors 
in the observed pairwise distances are not 
independently distributed, or have unequal 

TABLE 4. Possible tree forms wi th  four 
populations. 

(a) rooted 

1 
2 
3 
4 
5 
6 
’I 
8 
9 

10 
1 1  
1 2  

Esk 
Esk 
Esk 
Esk 
Esk 
Esk 
Ban 
Ban 
Ban 
Ban 
Eng 
Eng 

(each 

Ban Eng 
Ban Kor 
Eng Ban 
Eng Kor 
Kor Ban 
Kor Eng 
Eng Esk 
Eng Kor 
Kor Esk 
Kor Eng 
Kor Esk 
Kor Ban 

with probability 1/18) 

Kor 
Eng 
Kor 
Ban 
Eng 
Ban 
Kor 
Esk 
Eng 
Esk 
Ban 
Esk - 

A& 
13 Esk Ban Eng Kor 
14 Esk Eng Ban Kor 
15 Esk Kor Ban Eng 

(each with probability 1/9) 

(b)  unrooted 
&& 

1’ Esk Ban Eng Kor 
2’ Esk Eng Ban Kor 
3’ Esk Kor Ban Eng 

(each with probability 1/3) 

variances, the corresponding variance-co- 
variance matrix should be incorporated in 
the estimation procedure, as described in 
Kendall and Stuart ( 1961) ; but this im- 
provement has not been used in the pres- 
ent work. 

Corresponding to a branch of zero length 
in the method of minimum evolution, a 
branch of negative length in the least- 
squares method (there is no restriction 
against negative branches appearing) in- 
dicates the need to change the tree form. 
Indeed, it is not clear that a tree with no 
negative branches may always be found. 
The residual sum of squares is the criterion 
for choosing between trees of different 
form, although the introduction of prior 
probabilities seems to be impossible. In 
comparing branch lengths found by the 
“additive-tree” and “minimum-evolution” 
methods, it should be noted that not only 
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TABLE 5. Best tree found by duster analysis, 
showing sums of squares removed b y  each split. 

Eskimo 

Korean 

Bantu (YIIIY; English 

{ 
0.1745 

0.5421 

Total sum of squares = 0.8375 

does the former method give trees unrep- 
resentable in the character space, as men- 
tioned earlier, but also that the longer 
branches are likely to be considerably 
shorter than their “minimum-evolution” 
counterparts. 

AN EXAMPLE WITH FOUR POPULATIONS 
In order to illustrate the use of our 

methods in detail, in this section we present 
an exhaustive treatment of a case with 
four populations. 

The data consist of the gene frequencies 
for the five blood-group systems AIAnBO, 
R H  (four sera), MNSs, Fy, and Di, for 
samples from four human populations: Es- 
kimo, Bantu, English, and Korean. These 
data, which are given in Table 1, are part 
of a larger collection that we have used 
in previous communications. They are 
drawn from the following sources: Eski- 
mo-chown and Lewis (1959); Bantu- 
quoted by Zoutendyk, Kopek, and Mourant 
(1955), with the subdivision of group A 
provided by Mourant (personal communi- 
cation), and Dia presumed absent; English 
-Race and Sanger (1959) ; Korean-Won, 
Shin, Kim, Swanson, and Matson (1960), 
with subdivision of MN by S and s accord- 
ing to the Japanese proportions reported by 
Lewis, Kaita, and Chown (1957). No 
special significance should be attached to 
this choice of samples, which was made 
largely for convenience. 

From these data the values of 2 8 / ~  for 
the pairwise distances are calculated for 
each locus, and are given in Table 2. 
Thence the pairwise chords are found 

TABLE 6. “Additive-tree” and “minimum-evolu- 
tion” results for the unrooted tree forms. 

Residual sum Total amount of 
of squares evolution (“mini- 

Form (“additive tree”) mum evolution”) 

1’ 0.07054 1.7998 
2’ 0.08105 1.7850 
3’ 0.0003 7 1.6173 

[ ( 2 @ / ~ )  (dl - cos @ ) I ,  and the overall 
pairwise distances computed by taking 
the square root of the squared distances 
summed over loci, for each pair (Table 2 ) .  
Finally (as far as the preparation of the 
data is concerned) a coordinate system, 
relative to arbitrary Cartesian axes, is 
erected for the four points, the coordinates 
being given in Table 3. The consequent 
arrangement of the points is shown in 
Figure 5 .  

Applying the appropriate formulae, we 
find there to be 5 X 3 = 15 possible rooted 
tree forms, and 3 possible forms without 
a root; these are listed in Table 4, together 
with their prior probabilities, which have 
been found by direct enumeration. In 
order to demonstrate the normal course of 
the analysis we first group the populations 
by cluster analysis (Table 5) and we also 
find the Prim network (Figure 5, in which 
the interbranch angles are also given). 
Cluster analysis leads to form 15, in which 
the initial split is into Eskimo and Korean 
on the one branch, and Bantu and English 
on the other, while, on an examination of 
the angles, the Prim network suggests the 
same form, but unrooted (3’). The sec- 
ond best cluster analysis leads to form 6. 

The “additive-tree” and “minimum-evo- 
lution” results for the three possible un- 
rooted forms are given in Table 6, from 
which it will be seen that form 3’ is, in 
both instances, again the best. Table 7 
gives the dimensions of form 3’ on the 
two methods, and on the maximum-likeli- 
hood method (see below); the other two 
forms lead to zero (minimum-evolution) 
or negative (additive-tree) values for the 
central branch, thus indicating the need 
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FIG. 6. The 

0 
ZSKlMO 

“minimum-evolution” tree compared with the projection of the 
tree into the “now” space. 

for a change of form. The node coordi- 
nates for the “minimum-evolution’’ solu- 
tion will be found in parentheses in Table 8. 

Applying the modified maximum-likeli- 
hood method it transpires that only two 
of the rooted tree forms, numbers 6 and 
15, give convergent results, the likelihood 
of 15 being 3.826 times that of 6. Branches 
of negative time interval are generated 
with the remaining thirteen forms. Since 
form 15 has twice the prior probability of 
form 6, the final likelihood ratio in its 
favor is 7.652. Its node coordinates are 
given in Table 8, and its spatial dimensions 
in Table 7. Figure 6 shows its projection 
in the “now” space, together with the 
“minimum-evolution’’ tree. In passing, 

Table 9 gives the node coordinates of the 
second best “maximum-likelihood” tree, of 
form 6. 

We thus find that all the methods tried 
lead us to form 15 (or its unrooted equiva- 
lent, 3’), and the dimensions of this tree 
given by the modified method of maximum 
likelihood represent, we believe, the best 
estimates of the evolutionary paths on the 
given data. For the present we are not 
prepared to quote standard deviations for 
our estimates because of the complexity in- 
troduced by the number of possible forms. 
The problem is probably best approached 
by a numerical examination of the conse- 
quences of small displacements of the pop- 
ulations in the character space. 
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TABLE 7 .  Dimensions of the best tree (form 3’) 
according to  the three methods. 

Length in gene substitutions 

Branch 

Eskimo 
Korean 
Bantu 
English 
central 
Total 

“additive 
tree” 

0.1913 
0.3005 
0.4375 
0.1532 
0.2752 

* 

“minimum 
evolution” 

0.1998 
0.3605 
0.5169 
0.1270 
0.4132 

1.6173 

“maximum 
likelihood” 

0.2451 
0.2946 
0.4895 
0.2720 
0.3588 

1.6600 

TABLE 8. Node coordinates for the ‘‘maximum- 
likelihood” and “minimum-evolution” trees of  

form 15 and 3’. 

Node X Y Z Time 

top 0.4238 0.1258 0.0972 0.1698 

Esk-Kor 0.1229 0.0482 0.2065 0.0694 
(0.1221) (0.0747) (0.1394) 

Ban-Eng 0.4506 0.1327 0.0875 0.1609 
(0.4710) (0.2656) (0.0276) 

(“minimum-evolution” coordinates in parentheses) 

“Centtal” refers to the branch uniting the two 
splits. 

* I n  comparing these lengths it must be re- 
membered that the “additive tree” cannot be rep- 
resented in the character space. The comparative 
shortness of the “central” branch was anticipated 
in the section on the “method of minimum evo- 
lution.” 

DISCUSSION 
The introduction of automatic comput- 

ing methods in phylogenetic analysis has 
the advantage of objectivity, but this is 
not the greatest advantage. An automatic 
procedure needs a clearly formulated set 
of rules, and discussion of the acceptability 
of the rules requires a knowledge of the 
aims. Clarification of thought is thus 
likely to result, and may be more important 
than the improvement in precision and 
speed brought about by the automatic pro- 
cedure. In particular, by introducing a 
specific model the limitations of the method 
will be clear for all to see. 

The reconstruction of evolutionary trees 
is a type of inductive inference which is 
likely to be especially weak. Relevant evi- 
dence comes from many sources, and is 
often conflicting and difficult to weigh; 
the sheer mass of evidence may be a bar 
to its interpretation. Under these condi- 
tions, an objective method capable, in 
principle, of assaying the strength of the 
evidence, of testing the goodness of fit of 
specific models, and of using various kinds 
of data, should be considered a step for- 
ward. 

Ideally, before the use of any such 
method can be recommended with com- 

plete confidence, we would like to be able 
to state that it gives a satisfactory answer 
in well-known test cases. The most hope- 
ful sources of data at the moment are gene 
frequency data in cattle and man, and nu- 
cleic acid hybridization and protein struc- 
ture analyses. In this and previous pub- 
lications we have used gene frequency data 
in man both on account of its suitability 
and its availability. Unfortunately, how- 
ever, there is not much guidance from other 
sources as to the recent evolutionary his- 
tory of man, and the material is thus not 
very suitable for testing our methods. But 
we have been encouraged by the reason- 
ableness of results obtained on very modest 
amounts of data, as, for example, the form 
of the tree found for fifteen human popu- 
lations using the same type of data as we 
have used in the present paper (Edwards 
and Cavalli-Sforza, 1964; Cavalli-Sforza, 
Barrai, and Edwards, 1964). In plotting 
the tree on a map of the world, the actual 
branch lengths were unavoidably, and ad- 
mittedly, distorted, and only the form was 
undisturbed. It is therefore clear that a 
criticism levelled against this map-that 
the Maoris seem to “stem phylogenetically 
from the natives of Alaska” (Simpson, 
1965)-is not valid. The branch leading 
to the hlaoris could equally well have been 
drawn in many other ways without dis- 
turbing the basic form, and it should also 
be remembered that other forms with some- 
what similar branching sequences were not 
much less likely than the one shown on the 
map: forms, as well as dimensions, are 
subject to statistical error. But given that 
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TABLE 9. Node coordinates for the second best 
“maximum-likelihood” tree, of form 6. 

Node x 1 6 Time 

Top (Ban) 0.4325 0.0971 0.1040 0.2117 
Eng 0.2940 0.1251 0.1339 0.1508 
Esk-Kor 0.2620 0.1130 0.1467 0.1415 

only a minute fraction of the available data 
was used, and that no geographical infor- 
mation was incorporated in the estimation 
procedure, the result seems encouraging. 

Among the limitations of our model that 
have been considered in previous sections, 
inability to handle hybridization, con- 
vergence and parallelism (that is, the sim- 
ilar selective response to similar environ- 
mental stimuli in different populations) 
needs particular consideration. While hy- 
bridization gives rise to loops in the tree, 
which might possibly be detected, con- 
vergence and parallelism cause a breakdown 
of the assumption that evolution proceeds 
independently on each branch of the tree. 
This assumption is basic to our model (ex- 
cepting the case of directional selection con- 
stant in space: see Figure 2 ) ,  and probably 
basic to any tractable model for evolution- 
ary divergence. In the absence of signifi- 
cant loops, the breakdown of this assump- 
tion is likely to be the major cause of poor 
fits. 

However, it seems unlikely that this 
breakdown can occur in such a way as to 
cause extensive similarity a t  the geno- 
typic level between organisms that have 
diverged greatly in the past and have 
since evolved in a common environment. 
Some convergence may be detected at  a 
few loci, in which case a choice of loci 
might have to be exercised. Unfortunately, 
so little is known about the selective pat- 
tern of most genes that such a choice will 
be difficult, if not dangerous, most of the 
time. In man, the same or similar environ- 
ments, like malaria, can bring about dif- 
ferent selective responses, which depend 
on the genetic background of the exposed 
population, on its history, and on other 
environmental factors. In the case of ma- 

laria quite a variety of genetic adaptations 
have been observed, thalassemia, G6PD, 
and hemoglobins S and E being the best- 
known examples. 

To  sum up, we cannot do better than 
repeat an earlier warning, that “prolonged 
periods of selection peculiar to individual 
populations will not be detectable without 
data from the past [or other information 
about the selective situation], and no 
method of phylogenetic analysis can alter 
the fact than any observed diversity can 
be explained by any evolutionary tree 
provided we are willing to postulate the 
necessary selection.’’ But there is reason 
to believe that, where enough different 
genes are considered, the effects of truly 
convergent genes will be swamped by the 
larger number of genes behaving inde- 
pendently in different populations. 

In  the example we have used, the best 
estimate for the time of the first split was 
0.17 units of 2 t 2  ago, where t is the num- 
ber of generations and 2 the variance per 
generation. Putting f = %N, the variance 
due solely to drift in a population of ef- 
fective size N, t = 0.68 N generations. 
Such estimates should serve not only to 
increase our knowledge of evolutionary 
history, but also to help us to understand 
the evolutionary process. For example, if 
independent evidence corroborates an esti- 
mate of the time taken the model is to 
some extent vindicated, particularly if it 
can be shown that the assumed popula- 
tion sizes are sufficient to have maintained 
the observed numbers of alleles. 

SUMMARY 
An attempt has been made to establish a 

procedure for estimating the course taken 
by evolution. The model used is that of 
a branching random walk, which is strictly 
valid only when the causes of divergence 
between populations are random genetic 
drift and variable selection. With suitable 
transformations of the data, evolution 
can then be considered as a branching 
Brownian-motion process. To  keep the 
model as simple as possible it was supposed 
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that no population becomes extinct and 
that each population splits, a t  a random 
time, into two daughter populations each 
identical to its parent. The problem was 
to estimate the form and dimensions of 
the most probable tree uniting the 
presently living populations. The ideal 
method of estimation, maximum likelihood, 
proved difficult and had to be replaced in 
part by alternative procedures. In addition 
to describing the available procedures in 
detail, a simple example is worked out 
fully, and the logical content and limita- 
tions of the methods are considered in 
depth. 

ACKNOWLEDGMENTS 
This work has been supported by grants 

from the U.S. Atomic Energy Commission 
and by EURATOM-CNR-CNEN Con- 
tract No. 012-61-12 BIAI. 

We are particularly indebted to Dr. 
Laura Zonta for her painstaking coopera- 
tion in the heavy numerical work involved 
in the development of our methods, and 
to the late Professor Vittorio Galafasi and 
Mr. E. F. Harding for illuminating dis- 
cussions on tree forms. 

The final draft of this paper was pre- 
pared after A.W.F.E. had taken up an 
appointment in the University of Aberdeen. 

LITERATURE CITED 
CAMIN, J. H., AND R. R. SOKAL. 1965. A method 

for deducing branching sequences in phylogeny. 
Evolution 19: 311-326. 

CAVALLI-SFORZA, L. L. 1966. Population struc- 
ture and human evolution. Proc. Roy. SOC., 
London, B. 164: 362-379. 

Analisi della fluttuazione di frequenze geniche 
nella popolazione della Val Parma. Atti Assoc. 
Genet. Ital. 5: 333-344. 

CAVALLI-SFORZA, L. L., AND A. W. F. EDWARDS. 
1964. Analysis of human evolution. Proc. X I  
Int. Congr. Genet. 3: 923-933. 

-, AND -. 1966. Estimation procedures for 
evolutionary branching processes. Bull. Inst. 
Int. Statist., 35e Session. In press. 

CAVALLI-SFORZA, L. L., I .  BARRAI, AND A. W. F. 
EDWARDS. 1964. Analysis of human evolution 
under random genetic drift. Cold Spring Har- 
bor Symp. Quant. Biol. 29: 9-20. 

CAYLEY, A. 1857. On the theory of the analyti- 
cal forms called trees. Phil. Mag. 13: 172-176. 

CAVALLI-SFORZA, L. L., AND F. CONTERIO. 1960. 

-. 1859. On the analytical forms called trees. 
Phil. Mag. 18: 374-378. 

CHOWN, B., AND M. LEWIS. 1959. The blood 
group genes of the Copper Eskimo. Amer. J. 
Phys. Anthropol. 17: 13-18. 

COURANT, R., AND H. ROBBINS. 1961. What is 
mathematics? Oxford Univ. Press, Oxford. 

EDWARDS, A. W. F. 1967. The shortest network 
uniting a set of points, additional nodes being 
allowed. In  preparation. 

EDWARDS, A. W. F., AND L. L. CAVALLI-SFORZA. 
1 9 6 3 ~ .  The reconstruction of evolution. Ab- 
stract in: Ann. Hum. Genet., London 27: 105 
and Heredity 18: 553. 

-, AND -. 19636. A method for cluster 
analysis. Preprints of V Internat. Biometric 
Conf. Abstract in: Biometrics 20: 383 (1964). 

-, AND -. 1964. Reconstruction of evolu- 
tionary trees. Systematics Assoc. Publ. No. 6: 
Phenetic and Phylogenetic Classification: 67- 
76. 

-, AND -. 1965. A method for cluster 
analysis. Biometrics 21: 362-375. 

FISHER, R. A. 1958. Statistical methods for re- 
search workers. Thirteenth ed. Edinburgh: 
Oliver and Boyd. 

HARDING, E. F. 1967. The probabilities of root- 
trees generated by random bifurcation. I n  
firepara t ion. 

KENDALL, M. G., AND A. STUART. 1961. The ad- 
vanced theory of statistics, 2, Ch. 19. Griffin, 
London. 

KIMURA, M. 1954. Process leading to quasi- 
fixation of genes in natural populations due to 
random fluctuation of selection intensities. 
Genetics 39: 28C295. 

-. 1955. Random genetic drift in multi- 
allelic locus. Evolution 9: 419-435. 

LEWIS, M., H. KAITA, AND B. CHOWN. 1957. The 
blood groups of a Japanese population. Amer. 
J. Human Genet. 9: 274-283. 

POLYA, G. 1937. Kombinatorische Anzahlbestim- 
mungen fur Gruppen, Graphen, und chemische 
Verbindungen. Acta Math. 68: 145-253. 

PRIM, R. C. 1957. Shortest connection networks 
and some generalizations. Bell Syst. Tech. J. 
36: 1389-1401. 

RACE, R. R., AND R. SANGER. 1959. Blood groups 
in man. Third ed. Blackwell Scientific Publi- 
cations, Oxford. 

RAo, C. R. 1952. Advanced statistical methods 
in biometric research. Wiley, New York. 

SIMPSON, G. G .  1965. Current issues in taxo- 
nomic theory (Book Review). Science 148: 
1078. 

SOKAL, R. R., AND P. H. A. SNEATH. 1963. Prin- 
ciples of numerical taxonomy. Freeman, San 
Francisco. 

WARD, J. H.  1963. Hierarchical grouping to opti- 
mize an objective function. J. Amer. Statist. 
Assoc. 58: 236-244. 



5 70 L. L. CAVALLI-SFORZA AND A. W. F. EDWARDS 

WON, C. D., H. S. SHIN, S. W. Km, J. SWANSON, J.  C. Willis, F.R.S. Phil. Trans. Roy. SOC. 
AND G. A. MATSON. 1960. Distribution of London B, 213: 21-87. 
hereditary blood factors among Koreans resid- ZOUTENDYK, A., A. C. KOPEC, AND A. E. MOURANT. 
ing in Seoul, Korea. Amer. J. Phys. Anthropol. 1955. The blood groups of the Hottentots. 
18: 115-124. 

YULE, G. U. 1924. A mathematical theory of ZUCKERKANDL, E. 1965. The evolution of hemo- 
evolution, based on the conclusions of Dr. globin. Sci. Amer. 212: 110-118. 

Amer. J. Phys. Anthropol. 13: 691-697. 


