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STRUCTURE OF NETWORKS: 
 
 Networks and their representation: examples 
 

 Distance, diameter, degree distribution 

 
 Network models: random, scale-free, small-world networks 

 
 
 

EPIDEMICS ON NETWORKS: 
 
 Infectious diseases: classical and network approaches 

 
 Modeling epidemics on networks 
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NETWORKS 
 

A network is represented by a graph with N  nodes (or vertices) and L links (or 
edges). 
 
Nodes represent individuals, objects, subsystems, etc.. Links represent interactions, 

dependencies, communication channels, etc. 
 

 
 
A network can be undirected (a,c) or directed (b), weighted (c) or unweighed (a,b). 
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Networks provide a truly interdisciplinary modeling tool... 
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Social networks... 
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Information networks... 
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Transportation networks... 
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Similar topological structures are found in very different contexts: 
 
        common theories, methodologies, algorithms 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
The "directors network" of                                                                                     The protein interaction 

the Italian companies                                                                                                    network of yeast 
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ADJACENCY MATRIX  
 
An unweighed network is completely described 
by the NN   adjacency matrix ][ ijaA  : 

 
1ija  if the link ji   exists,  

 0ija  otherwise 

 
 

                                                                                   

 
 
 
 
 
 
        
       
       
       
       
       
        

 
 
 
 
 
 

      

 
 
 
 
 
 
        
       
       
       
       
       
        

 
 
 
 
 
 

 

 
A is symmetrical if the network is undirected, asymmetrical if the network is 
directed.  
 

Typically A is a sparse matrix (many nodes, few edges), often very sparse. 
 
  



 

 
Carlo Piccardi – Politecnico di Milano – http://home.dei.polimi.it/piccardi  

 
DISTANCE AND DIAMETER  
 

 
 
The distance ijd  is the length (measured in 

number of links) of the shortest path 
connecting ji  . 

 
 
For a connected network, the diameter D  
and the average distance d  are: 
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DEGREE AND DEGREE DISTRIBUTION 
 

In an undirected network, the degree ik  of 

node i  is the number of links connected to i  
(=the number of neighbors of i ): 
 
 

    
j

iji ak    

 
 
 
 

If the network is directed, we must distinguish between in-, out-, and total degree 
of node i . 
  

ki=5 
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The degree distribution )(kP  of a network specifies the fraction of nodes having 

exactly degree k  (=the probability that a randomly selected node has degree k ): 
 

N

k
kP

 degree with nodes #
)(    ,         1)( 

k

kP  

 

It is often more practical to consider the cumulative degree distribution:  
 








max

)(
 degree with nodes #

)(

k

kh

hP
N

k
kP   ,          1)( min kP  

 
 

 
The first moment of the degree distribution )(kP  is the average degree: 
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In a (strictly) homogeneous network all nodes have the same degree. 
 

Example: a complete (=all-to-all) network with 10N  and 9 kki  i . 

 
 
 
 
       
 

 
 
 
 
 
 
 
 
 

Example: a homogeneous network with 1)6( P . 
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RANDOM NETWORKS 
 
 
This is a random (or Erdös-Rényi) network, 

obtained by letting 100N  and connecting 

300L  randomly extracted pairs (hence 

6100/3002/2  NLk ). 
 
 
 
 

 
 
 
For large N , the degree is Poisson-distributed 

!/)( kkekP kk  
, hence: 

 

  the "typical" scale of node degree is  kki  

  node degrees have small fluctuations around  k  
 

       the network is “almost homogeneous” 
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“SCALE-FREE” NETWORKS 
 
This is a scale-free network, obtained by adding 
one node at a time, and connecting it 

preferentially (=with higher probability) to 
nodes with higher degree (Barabási-Albert 
algorithm). 
 
 
The network contains few very connected nodes 
("hubs") and many scarcely connected nodes. 
 

 
For large N , the degree distribution is a power-law function 

 kkP )( : 

   

  node degrees have large fluctuations around  k : 

   there is no "typical" scale of node degree 
 

       the network is strongly heterogeneous:  

 if 3  the second moment 
222  kk   

 diverges with N  (“heavy tail”) 
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Some examples of (cumulative) degree distribution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                the air transportation network                           Facebook (721 million nodes,  May 2011) 
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Robustness & Fragility: A scale-free network is  
 

 robust with respect to failures: if a node is removed at random (with all its links), the 

connected fraction of the network remains large and the average distance remains small.  
 

 fragile with respect to attacks: if nodes are removed starting from those with highest 

degree, the connectivity rapidly decays. 
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“SMALL-WORLD” EFFECT 
 
In typical real-world networks, the average distance

 

 ijdd  turns out to be 

surprisingly small. 
 

 
 
 
 
Empirically, it is observed that  

 
Nd log  

 
i.e. d  increases "slowly" with N  
("small-world" effect). 
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Watts and Strogatz (1998) demonstrated that adding a few long-distance 
connections to a regular network yields a dramatic decrease of d . 
 

 
 
 
p  = fraction of links rewired 

 
 
 
 
 

 
 
 
If we increase p from zero the average 

distance rapidly decreases. 
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STRUCTURE OF NETWORKS: 
 
 Networks and their representation: examples 
 

 Distance, diameter, degree distribution 

 
 Network models: random, scale-free, small-world networks 

 
 
 

EPIDEMICS ON NETWORKS: 
 
 Infectious diseases: classical and network approaches 

 
 Modeling epidemics over networks 
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335 new diseases  
emerged from  
1940 to 2004 

Jones et al (2008) 
Nature 451:990 

The importance of infectious diseases 

More than 25% of annual deaths worldwide are caused by infectious diseases 

Morens et al (2004) Nature 430:242 
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The importance of infectious diseases 

Victimes de la peste de 1349  
(Gilles de Muisit, 1272-1353)  

Spanish flu (October 1918) 
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Classical modelling approaches 

Homogeneous mixing among N individuals 

yt is “the total number who are ill” at time t  
 (infectious, thus infectives) 

xt  “denotes the number of individuals still 
 unaffected” (susceptibles) 

zt  is “the number who have been removed   
 by recovery and death” (recovered) 

Kermack and McKendrick (1927), Proc. Royal Soc. A 115: 700 
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Classical modelling approaches 

The flexibility of compartmental models 

Rupnow et al (2000), Emerg Infec Dis 6: 228 

Casagrandi et al (2006), Math Biosc 200: 152 Greenhalgh et al (2001), IMA 18: 225 

Pickles et al (2010), Sex Transm Infect  86: i33 
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The need for network approaches: the small-world effect 
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The need for network approaches: scale-free networks 
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CONTAGION AND EPIDEMICS ON NETWORKS 
 

Probabilistic cellular automata are used to model the spread of infectious diseases 
over the network - but also of products’ adoption, opinions, etc. 
 
 

 FINITE STATE SET: node (=individual) i  

is in state is },,2,1{   at time t 

 
e.g.:  
Σ={Susceptible, Infected, Recovered} 
in epidemics 
Σ={Non adopter, Adopter}  
in marketing 

 
 

 LOCAL RULES (=CONTAGION MECHANISM): 

the next state 
i
ts 1  depends (according 

to probabilistic rules) on 
i
ts  and on the 

state 
j

ts  of the neighbors  
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Example: the SIS process 
 

At time t , each node is 
 

 susceptible (S) (= it is wealthy but can potentially be infected), or  
 
 infected (I) (= it is infected and capable of transmitting the infection) 

 
 
LOCAL RULES: 
 

 infection: a node i  in state S becomes I with probability 

iI , i.e. proportional to the number iI  of infected 

neighbors 
 

 recovering: a node in state I returns S with probability   

 
 
What is the global behavior of the epidemics? 
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In a homogeneous (or almost homogeneous) 
network: 
 
 

 if 



k


          the fraction )(ty  of infected tends to 

0 (=the epidemics dies out) 
 

 if 



k


           the fraction y  of infected increases 

with the transmission rate   

 
 

 
This result is consistent with the classical epidemiology 
(Kermack and McKendrick, 1927): 
 
 

No epidemics can survive if the transmission 

rate is below the epidemic threshold. 
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Some technical details... 
 
 

Let ],0[)( NtY   be the number of I and ]1,0[/)()(  NtYty  their density (prevalence). 

 

))()(()()()1( tYNttYtYtY    

 

where )(t  is the estimate of the average number of I among the neighbors of any S. 

 

Assuming )(tyk   (average n. of neighbors  prob. that a neighbor is I) we obtain (for 

0 ) the classical SIS model: 

 

))(1)(()()( tytyktyty    

 

 

The non-trivial ( 0 ), asymptotically stable equilibrium )/(1  ky   exists iff 

 k/ . 

 

 kc /  is the epidemic threshold. 
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In a heterogeneous (e.g., scale-free) network 
(Pastor-Satorras and Vespignani, 2001): 
 

 the epidemic threshold is  2/ kkc  , 

then it may tend to 0 for large networks ( N ) 
 

          )(ty  never vanishes, whatever the value of 

the transmission rate   

 
 the nodes with larger degree are rare but have a 

large probability of being infected 
 

 
 
 
 

The epidemics is able to survive with 
arbitrarily small transmission rate    

(but with vanishing prevalence y ). 

 
 
  

homogeneous 

heterogeneous 
 y  

  
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Some technical details... 
 
 

How can we model the epidemic dynamics when the network is strongly inhomogeneous? 

  

We must model y  separately for each ensemble of nodes having the same degree k : 

 

))(1)(()()( tyttyty kkkk     ,  maxmin ,, kkk   

 

 )(tk (n. of neighbors  prob. that a neighbor is I)  ktyhhPktyk hh /))()(()(~
. 

 

 

At the equilibrium ( 0ky ) we obtain 

)~/(1

1
~

~

ykyk

yk
yk









  

 

Thus the prevalence ky  grows with k  and tends to 1 as k  (=nodes with a very large number 

of connections are rare but, most likely, they are infected). 

 

The (global) prevalence is given by 

 

)()()( tykPty kk  

 

  



Renato Casagrandi ACN 2010 – http://acn2010.ws.dei.polimi.it/ 

Fighting the disease: uniform immunization 

Different ways to fighting diseases 

Zanamivir 

• use of drugs (antivirals)  1g g    

• immunization (vaccines)  1 gb b  -

gwhere     is the fraction of immunized nodes 

        ( ) 1 1y t y t g k y t y tg b -  - -

Homogeneous networks 

1cg
k

g

b
 -

An immunization threshold does exist 

Homogeneous networks can be  
completely protected 

NOTE: WS too 
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Zanamivir 

• use of drugs (antivirals)  1g g    

• immunization (vaccines)  1 gb b  -

gwhere     is the fraction of immunized nodes 

Fighting the disease: uniform immunization 

           min max1 1 , ,k k k ky t y t g t y t k k kg b -  -  - 

Heterogeneous networks 

Different ways to fighting diseases 

The immunization threshold becomes 

2
1c

k
g

k

g

b
 -

Only complete immunization of  
scale-free networks (           ) 
ensures disease eradication 

 N  



Renato Casagrandi ACN 2010 – http://acn2010.ws.dei.polimi.it/ 

Fighting the disease: targeted immunization 

2

g

c

g

k
g

k

b b

g g

 
   

 

The weakness of highly heterogeneous networks (low resilience to  
   targeted attacks) can become a defensive strategy 

Immunize a fraction g of nodes starting from those with highest degree 

• cut-off kc(g) for the degree distribution 

• removal r(g) of links between immunized and others 
 new gP k








min

2
expcg

k

g

b

 
- 

 

mink is the minimum degree of the network 

Scale-free network    3P k k-

Barrat et al (2008), Cambr Univ Press 
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In modo analogo si possono studiare: 
 

 altri tipi di epidemie (SIR, SIRC, virus informatici, …) 
 

 strategie di vaccinazione (p.e. omogenee vs disomogenee)  
 

 propagazione di informazioni, opinioni, prodotti (“word-of-mouth”) 
 

 epidemie con densità non infinitesima alla soglia di sopravvivenza: 
 
 
 
 
 
Per y  infinitesimo, la rete scale-free 

(curva verde) è più efficiente della rete 
omogenea (curva blu) nel propagare 
l’epidemia (così come nel SIS), ma per y  

y  elevato avviene il contrario. 

 
 
 
 
 

y  

  
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University Press (2003) 

 

 Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks, Cambridge University Press (2008) 
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Survey papers: 
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(2003) 6-20 
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Reports 424 (2006) 175–308 
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Networks, Topology and Dynamics, Springer-Verlag (2009) 
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Carvalho et al., Robustness of trans-European gas networks, Physical Review E 80 (2009) 016106 
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Ugander et al., The Anatomy of the Facebook Social Graph, ArXiv 1111.4503, 2011. 
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