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STRUCTURE OF NETWORKS:
e Networks and their representation: examples
e Distance, diameter, degree distribution

e Network models: random, scale-free, small-world networks

EPIDEMICS ON NETWORKS:
e Infectious diseases: classical and network approaches

e Modeling epidemics on networks
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NETWORKS

A network is represented by a graph with N nodes (or vertices) and L links (or
edges).

Nodes represent individuals, objects, subsystems, etc.. Links represent interactions,
dependencies, communication channels, etc.

(a) (b)

A network can be undirected (a,c) or directed (b), weighted (c) or unweighed (a,b).
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Networks provide a truly interdisciplinary modeling tool...

(b)

Fig. 1.2 Three examples of the kinds of networks that are the topic of this review. (a) A visualization
of the network structure of the Internet at the level of “autonomous systems” —local groups
of computers each representing hundreds or thousands of machines. Picture by Hal Burch
and Bill Cheswick, courtesy of Lumeta Corporation. (b) A social network, in this case
of sexual contacts, redrawn from the HIV data of Potterat et al. [341]. (¢) A food web of
predator-prey interactions between species in a freshwater lake [271]. Picture courtesy of
Richard Williams.
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Social networks...
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facebook

Fig. 3.4 Friendship network of children in o U5 school. Friendships are determined by asking the

participants, and hence are directed, since A may say that B is their friend but not vice FacebOOk helps you conne(( and Share WIth

wersa.  Vertices are color coded according to race, as marked, and the split from left to . .
right in the figure is clearly primarily along lines of race. The split from top to bottom is the people n YOUf llfe.
tetween middle school and high school, i.e., between younger and older children. Picture

courtesy of James Moody.
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Information networks...

World—=Wide Web

"€ Nino

Agstrome_weaihet /m
A T Benjamin D. Santer
S ’\,“u,!rqmanfun’hlu,no:lrnanEFurmai
sycles_ |
Global warming controversy JRIGIEE T

‘intergovernmental

#J% Global_dimming
JfJ \United Nations_Framework_Convention_on_Climate_Change
(g Orbital orc;
ROrhitalt Adaptation_to_global_warming
dont
Politics_of_global warming
ate. :_denial
T —
" Extinction risk.{rom_climate. change
rculation
o
dex of Cliniate change aricies
tic_Multidecadal_Oscillation
: b aliecaa]
X WBIETA Sweden
al smperaturs sacord Jog
National Asecssment on Climate Cronps SR
NS el ool clomste mode AL
cord_of the past 1000 years
# &t i N e Climate_ethics
Goncretl ) 3 °\ Drought tolerance
b Raipw {sr A
) te g _&%“na'y Sange Programme
L T -,
comEtlects, of plobal warming_on Australla
G8_Climate_Change_Roundtable
F ooy dentirionn
Energy_consenvation

- Sustainable_development

talys

" Tokyo
France.

Berlin™ Germania

Carlo Piccardi - Politecnico di Milano - http://home.dei.polimi.it/piccardi



Transportation networks...

Pipeline diameter (inch)
Transmission network
—15-30
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-— 776 - 50

— Distribution network
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Similar topological structures are found in very different contexts:

—> common theories, methodologies, algorithms

The "directors network" of The protein interaction
the Italian companies network of yeast
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ADJACENCY MATRIX

An unweighed network is completely described
by the NxN adjacency matrix A=[a;]:

aj; =1 if the link 1 — ] exists,

a;; =0 otherwise

X~

Il
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RO R R OR R
OrRrR R ORRO
R R OR R R R
coRrROOR
cCoRrROR RO

2

Il
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R OR PR OO
RO oo ooo
oORrRRrROoOOoCOO
RO OO R OO
coroococo

A is symmetrical if the network is undirected, asymmetrical if the network
directed.

Typically A is a sparse matrix (many nodes, few edges), often very sparse.

CDICDCDCDCDCDCDI
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DISTANCE AND DIAMETER

The distance dij is the length (measured in

number of Ilinks) of the shortest path
connecting 1 — |.

For a connected network, the diameter D
and the average distance d are:




DEGREE AND DEGREE DISTRIBUTION

In an undirected network, the degree k; of

node 1 is the number of links connected to |
(=the number of neighbors of 1):

ki = Zaij
J

If the network is directed, we must distinguish between in-, out-, and total degree
of node I.
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The degree distribution P(k) of a network specifies the fraction of nodes having
exactly degree k (=the probability that a randomly selected node has degree k):

P(K) = # nodes with degree k Z P(K) =1

N 4
It is often more practical to consider the cumulative degree distribution:

P(k) =

# nodes W|th degree > k mex _
bt L ZP(h) P (Kyin ) =1

The first moment of the degree distribution P(k) is the average degree:

<k>:zkkP(k):%ziki =
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In a (strictly) homogeneous network all nodes have the same degree.

Example: a complete (=all-to-all) network with N =10 and ki =<k >=9 Vi.

Y T

S BVASN
\ROA L2
/25

4

Example: a homogeneous network with P(6) =1.
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RANDOM NETWORKS

This is a random (or Erdds-Rényi) network,
obtained by letting N =100 and connecting
L =300 randomly extracted pairs (hence
<k>=2L/N =2x300/100=6).
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Poisson Distribution

For large N, the degree 15 Poisson-distributed
P(k) =e~*> <k >X /K, hence:

P(k)

> the "typical" scale of node degree is k; =<k >
——> hode degrees have small fluctuations around < K >

L > the network is “almost homogeneous”
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P(k)

"SCALE-FREE” NETWORKS

This is a scale-free network, obtained by adding
one node at a time, and connecting it
preferentially (=with higher probability) to

nodes with higher degree (Barabasi-Albert
algorithm).

The network contains few very connected nodes
("hubs") and many scarcely connected nodes.

Power-Law Distribution

\\V/ <.
ZINANN

e A
//\

For large N, the degree distribution is a power-law function

1 P(k)~k™:
01F . _
: _ > node degrees have large fluctuations around <k >:
0.01f 1 there is no "typical" scale of node degree
S ; > the network is strongly heterogeneous:
0.0001 ; if @ <3 the second moment < k? >= g%+ < k >°
- : : , ! diverges with N (“heavy tail”)
1 10 100 1000
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Some examples of (cumulative) degree distribution:
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the air transportation network Facebook (721 million nodes, May 2011)
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Robustness & Fragility: A scale-free network is

e robust with respect to failures: if a node is removed at random (with all its links), the
connected fraction of the network remains large and the average distance remains small.

o fragile with respect to attacks: if nodes are removed starting from those with highest
degree, the connectivity rapidly decays.
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Figure 11. The relative size S of the largest cluster in the 0.00 0.01 0.02
Internet, when a fraction f of the domains are removed [25]. . .
O , random node removal; O, preferential removal of the fraction of vertices removed

most connected nodes.
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"SMALL-WORLD"” EFFECT

In typical real-world networks, the average distance| d =< dij >|turns out to be
surprisingly small.
Network Type n m z £
film actors undirected 449913 25516482 | 113.43 3.48
company directors undirected 7673 55392 14.44 4.60
math coauthorship undirected 253339 496 489 3.92 7.57
physics coauthorship | undirected 52 909 245300 9.27 6.19
@ | biology coauthorship | undirected 1520251 11803064 15.53 4.92
08) telephone call graph | undirected 47 000 000 80000000 3.16
H T email messages directed 59912 86 300 1.44 4.95
EmplrlcaIIYI It IS Observed that email address books directed 16881 57029 3.38 5.22
student relationships | undirected 573 477 1.66]| 16.01
sexual contacts undirected 2810
d~ |Og N g | WWW nd.edn directed 260 504 1497135 | 5.55|[ 11.27
2 | WWW Altavista directed 203549046 |f2130000000 10.46 | 16.18
E citation network directed 783339 6716198 8.57
Jg Roget’s Thesaurus directed 1022 5103 4.99 4.87
1 H n n H = | word co-occurrence undirected 460 902 17000000 70.13
1.€. d INCreases SIOWIY Wlth N Internet undirected 10697 31992 5.98 331
n - n @ | power grid undirected 4941 6594 2.67)| 18.99
( sma I I WO rI d effe Ct) ' 'a train routes undirected 587 19603 66.79 2.16
—'8 software packages directed 1439 1723 1.20 2.42
5 | software classes directed 1377 2213 1.61 1.51
E electronic circuits undirected 24097 53248 4.34)| 11.05
peer-to-peer network | undirected 880 1296 1.47 4.28
metabolic network undirected 765 3686 9.64 2.56
E protein interactions undirected 2115 2240 2.12 6.80
& | marine food web directed 135 598 4.43 2.05
S | freshwater food web directed 92 997 10.84 1.90
A | neural network directed 307 2359 7.68 3.97

v > Carlo Piccardi - Politecnico di Milano - http://home.dei.polimi.it/piccardi




Watts and Strogatz (1998) demonstrated that adding a few long-distance
connections to a regular network yields a dramatic decrease of d.

Regular Small-world Random
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STRUCTURE OF NETWORKS:
e Networks and their representation: examples
e Distance, diameter, degree distribution

e Network models: random, scale-free, small-world networks

EPIDEMICS ON NETWORKS:
e Infectious diseases: classical and network approaches

e Modeling epidemics over networks
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The importance of infectious diseases

More than 25% of annual deaths worldwide are caused by infectious diseases

ca rdiova_sc e Infectious diseases Annual( gzz?ns)
COMItONS Respiratory infections 3.96
HIV/AIDS 2.77
All other Diarrhoeal diseases 1.80
causes of death Tuberculosis 1.56
Vaccine-preventable 1.12
childhood diseases

Malaria 1.27
STDs (other than HIV) 0.18
Meningitis 0.17
Hepatitis B and C 0.16
Tropical parasitic diseases 0.13
Neoplastic Dengue 0.02
diseases Other infectious diseases 1.76

7.1 million

Injuries
5.2 million
Morens et al (2004) Nature 430:242
Asthma and
chronic obstructive pulmonary disease

3.0 milllion

No.of EIDevents *1 @23 @4-5 @6-7 @s-11

335 new diseases
emerged from
1940 to 2004

Jones et al (2008)
Nature 451:990




The importance of infectious diseases
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Classical modelling approaches

Homogeneous mixing among N individuals Ay
.| /
y;is “the total number who are ill” at time ¢ - 4
(infectious, thus infectives) 00}
x; “denotes the number of individuals still sao0 b

unaffected” (susceptibles)

0a

Z, is "the number who have been removed

by recovery and death” (recovered)  “°f
200 |
da w 200
e T s R‘_‘;I:
dt 4
1040 - *
d . : .
Y Koy — Uy g e . . . . &\‘5
/ , _ 5 e 18 A @ 30
d of infection.) This follows since the chance of an infection is proportional to
g the number of infected on the one hand, and o the number not yet infected
dt J ©on the other. | ' .

Kermack and McKendrick (1927), Proc. Royal Soc. A 115: 700



Classical modelling approaches

The flexibility of compartmental models

/ Commermal
birth hac @< i Male clients
| I !./\,{ Sec A AG, 5 CG¢ } O{Q'ilré? A'am Bridging infections
) Sy @) K@) Women :auseu;ol ani m::n RT—
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- ceasing sex it g
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ou | @? % | Pickles et al (2010), Sex Transm Infect 86: i33
mia)+ tpy Sa i@ By pial+ Ha
Rupnow et al (2000), Emerg Infec Dis 6: 228
ds (1) ,
5 = A — uS1(t) = B1(1)S1 (1) + Co1 S2(t) — Cr281(1),
dfi(n) )
= B1(1)51(t) — (u+ o + D)1 (1) + D21 12(1),
H H M g 48> (1)
” = Ay — puSa(t) — Ba(1)Sa(1) + C12S (1) — Co S2(1),
u , p o 0
— S I R C dir (¢ .
jr() = By(1)S2(t) — (u+ o + D) 2(1) + D1y (1),
” o(L(t) + (1)) — (u+ y)A(1).

Casagrandi et al (2006), Math Biosc 200: 152 Greenhalgh et al (2001), /MA 18: 225



The need for network approaches: the small-world effect
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The need for network approaches: scale-free networks
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Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the
previous 12 months, Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear,
indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For
females, = 2.54 +0.2 inthe range k>4, and for males, e=2.310.2 in the range k= 5. b, Distribution of the total number of part-
ners k, over respondents’ entire lifetimes. For females, ey, = 2.120.3 in the range k= 20, and for males, e, =1.6%0.3 in the
range 20 < ky, < 400. Estimates for females and males agree within statistical uncertainty.
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CONTAGION AND EPIDEMICS ON NETWORKS

Probabilistic cellular automata are used to model the spread of infectious diseases
over the network - but also of products’ adoption, opinions, etc.

e FINITE STATE SET: node (=individual) I
is in state ' >={l2,...,0} at time t

e.g.:
2={Susceptible, Infected, Recovered}
in epidemics

2={Non adopter, Adopter}

in marketing

e LOCAL RULES (=CONTAGION MECHANISM):

the next state St'+1 depends (according e

Non-adopter @ Old adopter & Recent adopter
Link between adopter and recent adopter

to probabilistic rules) on St' and on the

state S'[J of the neig hbors Fig. 1. Diffusion of Yahoo! Go over time. (A-C and D-F) Two subgraphs of the
Yahoo! IM network colored by adoption states on July 4 (the Go launch date),
August 10, and October 29, 2007. For animations of the diffusion of Yahoo! Go
over time see Movies S1 and S2.




Example: the SIS process

At time t, each node is
e susceptible (S) (= it is wealthy but can potentially be infected), or

e infected (I) (= it is infected and capable of transmitting the infection)

LOCAL RULES:

infection: a node | in state S becomes I with probability
Pli, i.e. proportional to the number |; of infected

neighbors

recovering: a node in state I returns S with probability y

What is the global behavior of the epidemics?
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In a homogeneous (or almost homogeneous)
network:

o if < 7k/ > the fraction Y(t) of infected tends to
<k >

0 (=the epidemics dies out)

o if B> i: > the fraction Yy of infected increases
<K>

with the transmission rate

éﬁ This result is consistent with the classical epidemiology
T (Kermack and McKendrick, 1927):

No epidemics can survive if the transmission
rate is below the epidemic threshold.
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Some technical details...

Let Y (t) €[0, N] be the number of I and Y(t) =Y (t)/ N €[0,1] their density (prevalence).
Y (t+1) =Y (t)—yAY (t) + BAO(t)(N —Y (1))
where @('[) is the estimate of the average number of I among the neighbors of any S.

Assuming ® =< Kk > y(t) (average n. of neighbors x prob. that a neighbor is I) we obtain (for
A — 0) the classical SIS model:

y(t) =—py(O) + 5 <k>yO)A-y())

The non-trivial (>0), asymptotically stable equilibrium Y =1—y/(<K>) exists iff
B>yl <k>.

P =yl <K > is the epidemic threshold.
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In a heterogeneous (e.g., scale-free) network

(Pastor-Satorras and Vespignani, 2001): /
e the epidemic threshold is f.=y<k>/< k? >,
__ )/
then it may tend to O for large networks (N — o) \\’// .
——> Y(t) never vanishes, whatever the value of /I\\\

the transmission rate

e the nodes with larger degree are rare but have a 7 ‘ \
large probability of being infected /
04 - . - .
03
02 The epidemics is able to survive with
y o | arbitrarily small transmission rate g
0.1 t (but with vanishing prevalence V).
0.0 = -
0.0 02 ,B 0.4 0.6
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Some technical details...

How can we model the epidemic dynamics when the network is strongly inhomogeneous?

We must model Y separately for each ensemble of nodes having the same degree K :

Vi (©) == () + SO, 1) A—y (1) , K=Kmin +-- - Kimax

Oy (t) =(n. of neighbors x prob. that a neighbor is I)= Ky (t) = k(Z,hP(h)y, (1))/ <k >.

At the equilibrium (Y =0) we obtain
. 1
y+ 8y 1+ y I(BKY)

Thus the prevalence Yy grows with Kk and tends to 1 as K — o0 (=nodes with a very large number
of connections are rare but, most likely, they are infected).

Yk

The (global) prevalence is given by

y(t) =Z¢ P(k)yk (1)
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Fighting the disease: uniform immunization

Different ways to fighting diseases :, "' _
e use of drugs (antivirals) y—y-p p>1 = W
e immunization (vaccines) £— S-(1-9)

where § is the fraction of immunized nodes

Homogeneous networks

An immunization threshold does exist

g, >1-—7

k)

Homogeneous networks can be
completely protected

NOTE: WS too



Fighting the disease: uniform immunization

Different ways to fighting diseases

e use of drugs (antivirals) y—>y-p p>1

e immunization (vaccines) S — S-(1-9)
where g is the fraction of immunized nodes

Heterogeneous networks

3 () =¥ )+ A(1-9)0, (1= v, (1) K=k

The immunization threshold becomes

g S1-L <k>

A K)

Only complete immunization of
scale-free networks (N — o0)
ensures disease eradication




Fighting the disease: targeted immunization

The weakness of highly heterogeneous networks (low resilience to
targeted attacks) can become a defensive strategy

Immunize a fraction g of nodes starting from those with highest degree

o cut-off k.(g) for the degree distribution

e removal r(g) of links between immunized and others

Ky o8 _ g{ﬂ

k), 7

2y
[l exp| —
gC Xp( kminﬁj

Kmin is the minimum degree of the network

Scale-free network P(k)O k™

1.0

O—0 Uniform -
0O—0 Targeted _|

i/l

Barrat et al (2008), Cambr Univ Press



In modo analogo si possono studiare:
. altri tipi di epidemie (SIR, SIRC, virus informatici, ...)
. strategie di vaccinazione (p.e. omogenee vs disomogenee)
. propagazione di informazioni, opinioni, prodotti (“word-of-mouth”)

. epidemie con densita non infinitesima alla soglia di sopravvivenza:

0.5

0451

0.4k

Per Yy infinitesimo, la rete scale-free 0.35¢
(curva verde) e piu efficiente della rete 03
omogenea (curva blu) nel propagare Y nas)
I’'epidemia (cosi come nel SIS), ma per naf
y elevato avviene il contrario. 015p

01k

0.osr
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