Bocconi

LA MATEMATICA NELL'ERA DEI DATI

 (\cdot)

ORIENTAMATICA 3 MARZO 2023

Prof. Emanuele Borgonovo Director, Department of Decision Sciences Bocconi University

Data Science

Università

Bocconi

Globalization and increased connectivity make available to citizens, to corporations and scientists an amount of data unthinkable a few years ago. Increased connectivity is changing the way we work and communicate

> We register a large increase in the use of computers in everyday life, with new societal phenomena, entrepreneurial opportunities and new professions

A data driven economy is awaiting us and an adequate skill basis is needed to turn the **new opportunities into successful careers**

Data Science is a new and fast growing scientific discipline

DATA SCIENCE

Advantages

Data Driven Economy and Big Data

Big Data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making (Source: Gartner)

 The incredible amount of information and data generated by new technologies can bring competitive advantages for companies and institutions

http://www.webpagefx.com/internet-real-time/

Source: Data Age 2025, IDC White Paper - #US44413318

Copyright: John Iwata (IBM, used with permission)

Big Data Application Fields: some examples

BEMACS

- City traffic
- Revenue Management
- Online Forecasts
- Political elections
- Personalized advertising
- Purchasing recommendations
- Cross selling
- Online Auctions
- Geolocalization Healthcare/medica
 research
- Fraud detection

Communication of the EC to the European Parliament July 2 2014

"McKinsey predicts that companies will struggle to find Big Data talent due to a shortage in well-trained people."

Players

Big Data

UK

- Several players to create added value from the availability of big data
- EC document on cloud computing: big data and correlated services will reach **16,9 billion USD value** in 2015, with an average growth rate of **40%**, seven times higher the rate of growth of technology market

 In the UK number of big data specialists working in big firms will increase by 240% (Source: SAS report)

EU Grand Colation for Digital Jobs

Adequate Skill Base, EU Document

B Università Bocconi MILANO

- An adequate skills base: The competence base addresses descriptive and predictive data analytics, data visualisation, artificial intelligence and decision-making software tools and algorithms
- The EU document encourages *close cooperation between players* (i.e., industry and universities) to achieve the sharing of the desired competences
- *The training of* professionals who can perform in-depth thematic analysis, exploit machine findings, derive insight from data and use them for improved decision-making is considered crucial

Decision Making Process

A Quote

"By modeling various alternatives for future system design, Federal Express has, in effect, made its mistakes on paper. Computer modeling works; it allows us to examine many different alternatives and it forces the examination of the entire problem."

Frederick W. Smith, Chairman and CEO of Federal Express Corporation

Algorithm s can fail

- From the Google Flue case

https://www.wired.com/2015/10/can-learn-epic-failure-google-flu-trends/

Wald's Planes

Eratostene di Cirene (276 a.c. – 194 a.c.)

- -Eratosthenes of Cyrene: mathematician, astronomer and geographer of ancient Greece
- —Librarian of Alexandria in Egypt
- *—Calculated for first earth circumference and earth axis inclination*
- —... Invented an algorithm to find prime numbers!!!

Eratostene's Algorithm

- We want to find the prime numbers in the first (say) 20 natural numbers

Lotsa Pasta

Lotsa Pasta

—Is a small manufacturer and produces:

• ziti

The problem in words

Lotsa Pasta is developing a production plan for next week

Each ton of ziti that is produced requires 7 pounds of a special wheat germ. Each ton of the macaroni requires 4 pounds of the wheat germ.

The company currently has 28 pounds of wheat germ in stock and will not be able to purchase any additional wheat germ in time for next week's production. All other ingredients are readily available and will not influence the amount of each product that will be produced.

Labor is also required to produce each product.

This production plan should:

maximize total weekly profit;

not use more than 90 hours of labor;

not use more than 28 pounds of wheat germ;

Let W be the tons of wheat macaroni to produce next week. Only 90 hours of labor are available next week.

Ziti has a profit margin of \$350 per ton

Wheat macaroni has a profit margin of \$300 per ton.

The pasta business is booming, and Lotsa Pasta can sell all of the pasta it makes.

Determine a production plan that specifies how many tons of wheat macaroni and ziti to produce next week.

From text to Equations

max	300	W +	35	0Z	
subje	ct to	:			
20W	+	10Z	\leq	90	labor hour restriction
4W	+	7Z	\leq	28	wheat germ availability
W	+	Ζ	\geq	1	produce at least one ton of pasta
3W			\geq	Ζ	at most 3 tons of ziti per ton of macaroni
$W \ge 0$	0, Z	≥ 0			

From Equations to Solution

Lotsa Pasta						
Decision variable de	finitions:					
W = number of tons	s of wheat i	macaror	ni to produce r	next we	ek.	
Z = number of tons	of ziti to pr	oduce n	ext week.			
Decision variables:	W	Z				
tons produced	3.50	2.00				
Objective function:			Total Profit			
profit/ton	\$300	\$350	\$1,750.00			
Constraints:			Lhs	Туре	Rhs	Units
Labor	20	10	90	<=	90	hours
Wheat germ	4	7	28	<=	28	pounds
Min. production	1	1	5.5	>=	1	tons
Product mix	3	-1	8.5	>=	0	tons

DATA SCIENCE LAB

- MoMA, Museum of Modern Art, NY
- https://www.moma.org/collection/
- <u>https://www.kagqle.com/momanyc/m</u> seum-collection

a series organization between a Right Provide an endpager blands strape strat

19

Data Science at Bocconi

 Data science at Bocconi is a major intellectual discipline across economics, physical and statistical sciences that relies on the method of artificial intelligence, computer science, mathematics, statistics, as well as on the rigorous thinking of economic and physical modelling

BACHELOR IN ECONOMICS, MANAGEMENT AND COMPUTER SCIENCE

Program structure: 4 pillars

The Study Path

Compulsory courses Computer skills First foreign language

YEAR

2YEAR Compulsory courses Specialization courses Second foreign language Soft skills **3**YEAR

Compulsory courses (specialization) Elective courses Final report Internship (optional) Exchange Program (optional)

Study plan

	1° Year	2° Year			
l° Sem	 Microeconomics Mathematics and Statistics (Module 1 – Mathematics) Principles of Management 	 Advanced Mathematics and Statistics (Module 1 - Applied Mathematics) Macroeconomics Fundamentals of Computer Programming European and International Information Law and Data Economy Technological Innovation Seminars 1 			
2° Sem	 Mathematics and Statistics (Module 2 – Statistics) Fundamentals of Computer Science Accounting Fundamentals of Information Technology Law First foreign language 	 Advanced Mathematics and Statistics (Module 2 -Advanced Statistical Methods) Machine Learning Econometrics Principles of Finance Technological Innovation Seminars 2 Second foreign language 			

Study plan

3° Year

1° Sem	 Big Data and Databases Computational Microeconomics (Module 1 - Game Theory) Marketing Analytics Elective 1
2° Sem	 Computational Microeconomics (Module 2 - Mechanism Design) Information Systems Management Elective 2 Elective 3 or internship Final Paper

Electives such as

- Social media and branding
- Big data and public policy,
- Theoretical computer science,
- Logics and algorithms
- Advanced computer programming

Ad hoc **seminars** offered in collaboration with partner companies (Google, Cisco, IBM, SAS, Facebook, Oracle, HP, ...)

Some Recent Facts and Links

- BEMACS students winner of a prestigious IBM international coding competition:
- <u>https://www.youtube.com/watch?v=7FZYWSU2dZo&feature=youtu.be</u>
- BEMACS Lecture with Professor Alfio Quarteroni
- https://www.youtube.com/watch?v=e-2o0hhKsLw

Be Cool

BE-MACS!

Bocconi MILANO

WWW.UNIBOCCONI.EU/BEMACS

THANK YOU FOR YOUR ATTENTION!

Università Commerciale Luigi Bocconi

Via Sarfatti 25 | 20136 Milano – Italia | Tel +39 02 5836.1