

L'ingegnere ferroviario: progettare treni

• Tram

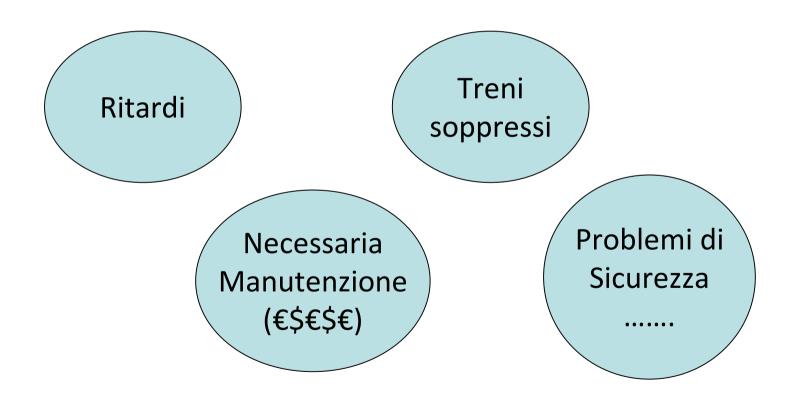
Metropolitane

L'ingegnere ferroviario: progettare treni

• Treni regionali

• Treni alta velocità

L'ingegnere ferroviario e la matematica – tre esempi


- La matematica dei guasti: statistica e probabilità
- Frenare con il calore: stimare la temperatura di un reostato di frenatura
- Evitare che il treno interferisca con l'ambiente circostante: la compatibilità elettromagnetica

La matematica dei guasti: statistica e probabilità

Tipe:			desfinizione desnotion	erorio time	ritande delay	informazioni function	cionam
0	R	10893	STRADELLA	18:19	68"	(9.31) - STRADELLA (19.37)	1
0	R	2669	BRESCIA	18:22	188	FERMA A: TREU	5
<i>G</i>	R	18842	HILANO P.GAR	18:26	188'	FERMA A: MILF	6
0	R	20366	HILANO G. P.	18:27	100'	: HILAHO G. P. (18.33)	2
7	R	2629	PALAZZOLO	18:27	100	-PALAZZOLO (19.58)	7
5	₽	2285	BOLOGNA C.LE	18:28	188	FERHA A: HI ROGO	11
7	R	10489	CREHONA	18:38	188	- CAPRALBA (19.85) - CASAI	5
7	R	33474	HILANO P.GAR	18:31	188	44) - HILANO P.GAR (18.51)	3
7	R	2195	GENOVA BRIG.	18:33	56'	IIA (19.82) - UOGHERA (19.2	11
7	R	10845	ROURTO	18:34	58'	HANO (19.12) - CALCIO (19.	1
	19	:48	E'VIETATO ATTRA			I SERVIRSI DEL SOTTOPASSAC EA GIALLA	610

La matematica dei guasti

• Problema: i treni si guastano...

La matematica dei guasti

• Alcuni guasti possono portare conseguenze di

sicurezza:

- Incendi
- Deragliamenti
- Esplosioni
- Guasti ai freni

– ...

La matematica dei guasti

• Come controllare e ridurre i guasti più critici?

La matematica che studia gli eventi casuali

La matematica dei guasti: probabilità

Quando accadrà un guasto?

Non si sa: in un istante casuale

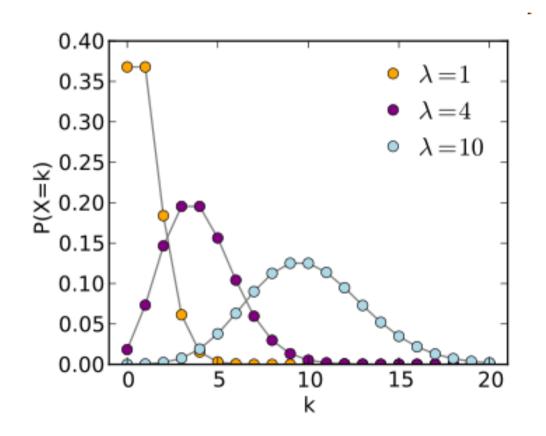
- Quali guasti sono possibili?
- Quanto sono probabili?

A queste domande risponde la matematica

Ogni quanto tempo possiamo aspettarceli?

Obiettivo dell'ingegnere: progettare un treno in cui i guasti più gravi siano rari

Stimare la probabilità dei guasti


- Un treno è un insieme di componenti.
- Ogni componente si può guastare.
- Modello distribuzione guasti nel tempo: Poisson $X \sim P(\lambda)$

$$P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \qquad \lambda = \frac{1}{MTBF}$$

- λ = tasso di guasto (guasti attesi per ora)
- MTBF = tempo di attesa tra due guasti in media

Stimare la probabilità dei guasti

• λ = tasso di guasto (guasti attesi per ora)

Esempi di obiettivi

Obiettivi di sicurezza e affidabilità per una metropolitana

$$\lambda = \frac{1}{MTBF}$$

Rischio incendio	MTBF > 1 miliardo di ore
Rischio guasti al freno	MTBF > 1 miliardo di ore
Rischio esplosioni	MTBF > 1 miliardo di ore
Rischio deragliamenti	MTBF > 1 miliardo di ore
Guasti che causano ritardi > 2 min	MTBF > 54'000 ore
Guasti che causano ritardi > 2 ore	MTBF > 2'750'000 ore

Progettazione per la sicurezza

• Esempio: rischio incendio di una metropolitana su gomma

Problema

Partenza con un freno tirato: l'attrito sulle gomme può surriscaldarle e farle incendiare

Rischio incendio ammissibile:

MTBF > 1

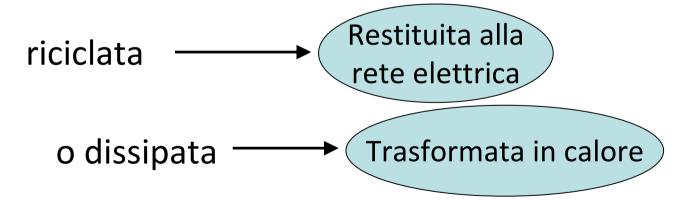
miliardo di ore

Progettazione per la sicurezza: rischio incendio

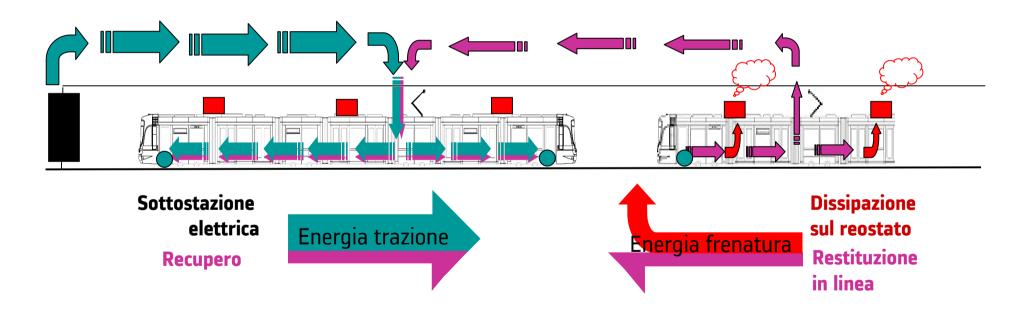
- La soluzione: progettare un sistema intelligente di controlli incrociati sullo stato del freno e dei motori
- → così sono necessari almeno due guasti per avere il rischio di incendio:
 - Guasto del freno
 - Guasto del sistema di controllo

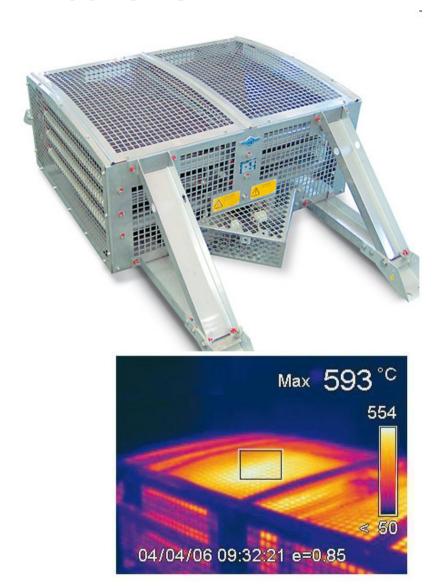
```
Pr(Incendio) = Pr(GuastoFreno \cap GuastoControllo) =
```

= Pr(GuastoFreno) * Pr(GuastoControllo) < Pr(GuastoFreno)

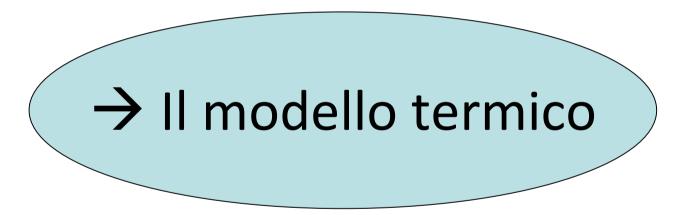

Frenare con il calore: stimare la temperatura di un reostato di frenatura

Frenare un treno


- Trazione elettrica
 L'energia per muovere il treno viene presa dalla catenaria
- Frenatura elettrica
 Per frenare il treno questa energia va

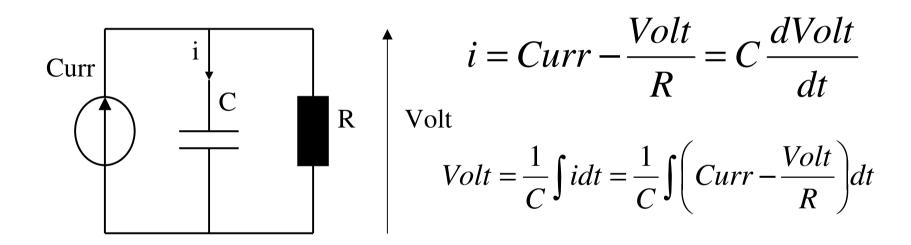

Frenare un treno

Frenatura elettrica

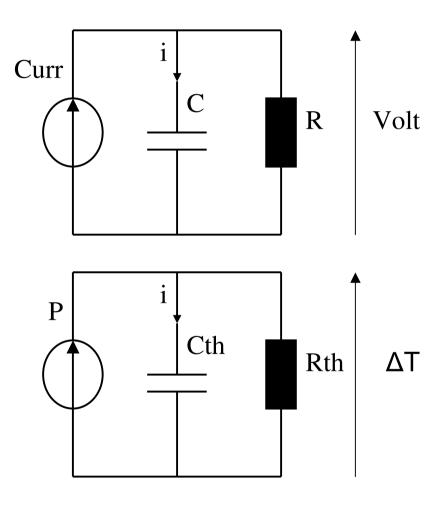

Frenare un treno con il calore

- Reostato = una resistenza che serve a frenare un treno trasformando in calore l'energia elettrica
- Un reostato tende a scaldarsi molto
- è importante stimare sempre la temperatura del reostato per evitare che bruci

Il modello termico di un reostato


 Come stimare la temperatura di un reostato senza misurarla direttamente?

Si costruisce un modello matematico in base alle leggi della fisica


Il modello termico di un reostato

- Reostato = resistenza elettrica
- Modello elettrico del reostato

Resistenza: $Volt = Ri_R$ Condensatore: $i = C \frac{dVolt}{dt}$

Analogia reti elettriche – reti termiche

Modello	Modello
elettrico	termico
Corrente	Potenza
Curr	dissipata P
Voltaggio	Temperatura
Volt	ΔT
Capacità C	Capacità termica Cth
Resistenza	Resistenza
elettrica R	termica Rth

Analogia reti elettriche – reti termiche

Le formule calcolate sulle grandezze elettriche si applicano uguali alle grandezze termiche

$$Volt = \frac{1}{C} \int idt = \frac{1}{C} \int \left(Curr - \frac{Volt}{R} \right) dt$$

$$\Delta T = \frac{1}{Cth} \int idt = \frac{1}{Cth} \int \left(P - \frac{T}{Rth} \right) dt$$

Equazione differenziale del primo ordine

Il modello termico di un reostato

Il modello termico del reostato viene scritto nel software del treno per avere sempre sotto controllo la temperatura

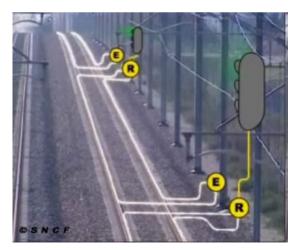
$$TempNuova = TempVecchia + \frac{1}{R_C_HEAT} * \left(Potenza - \frac{TempVecchia}{R_R_HEAT} \right) * \frac{I_DT}{1000}$$

Se la temperatura sale oltre una certa soglia, si devono utilizzare altri metodi per frenare

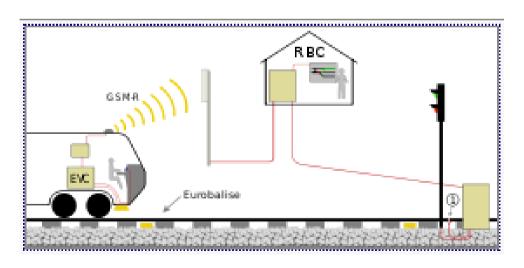
Evitare che il treno interferisca con l'ambiente circostante: la compatibilità elettromagnetica

Interferenze indesiderate: la compatibilità elettromagnetica

Disturbi elettromagnetici


- Interferenze nei microfoni dai cellulari
- Cellulari spenti in aereo
- Videocassette rovinate dai forni a microonde
- Leggenda metropolitana: le chitarre elettriche suonano da sole al passaggio del tram di Padova
- Le indagini di Capitan Ventosa

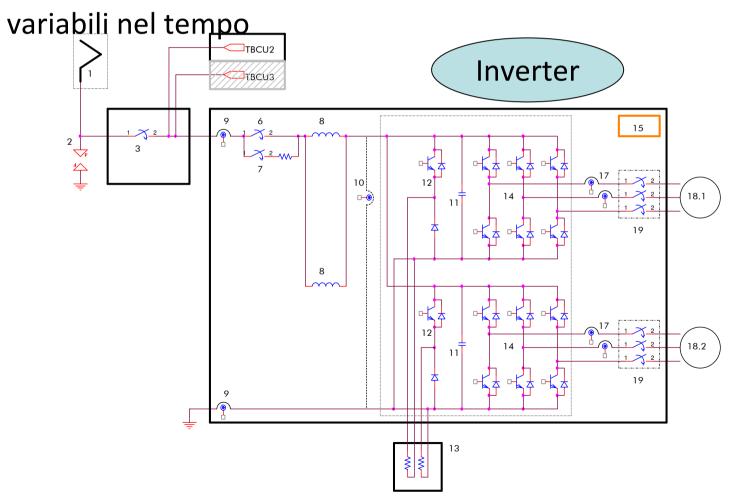
Compatibilità elettromagnetica e treni


- I treni possono generare disturbi elettromagnetici
 - Interferenze con il sistema di segnalamento (circuiti di binario)
 - Interferenze con i sistemi di comunicazione
 - Interferenze con l'ambiente esterno (chitarre & co.)
 - Interferenze con i passeggeri (pacemaker)

Compatibilità elettromagnetica e treni: il segnalamento

- Segnalamento: sistema di sicurezza
 - Individua e regola la posizione dei treni
- Ci sono frequenze su cui il treno non può emettere onde elettromagnetiche: 50Hz
 - Frequenza utilizzata dal segnalamento per comunicazione

Compatibilità elettromagnetica e treni


- Perché i treni emettono campi elettromagnetici?
- Leggi di Maxwell: i campi elettromagnetici sono generati da tensioni e correnti variabili nel tempo

Nome	Forma locale
Legge di Gauss elettrica	$\nabla \cdot \mathbf{D} = \rho$
Legge di Faraday	$\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$
Legge di Gauss magnetica	$\nabla \cdot \mathbf{B} = 0$
Legge di Ampère-Maxwell	$\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}$

Compatibilità elettromagnetica e treni

• Perché i treni emettono campi elettromagnetici?

• Trazione elettrica: i motori sono comandati tramite correnti

Segnali e frequenze

- Come individuare le frequenze con cui un segnale può interferire?
- Teorema di Fourier:

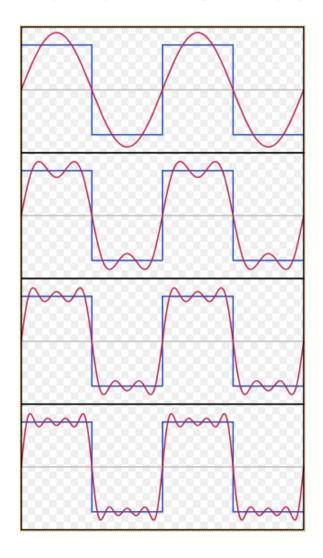
Ogni funzione periodica s(t) può essere decomposta in una somma di segnali sinusoidali con diverse ampiezze e fasi, la cui frequenza è un multiplo intero della fondamentale

Serie di Fourier

Ogni funzione periodica può essere sviluppata in serie di Fourier

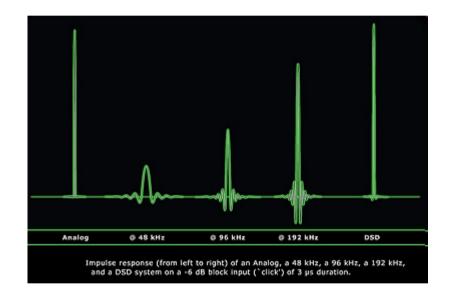
$$s(t) = C_0 + \sum_{n=1}^{\infty} \left[A_n . \cos(n\omega t) + B_n . \sin(n\omega t) \right]$$

$$C_0 = \frac{1}{T} \int_0^T s(t) dt$$

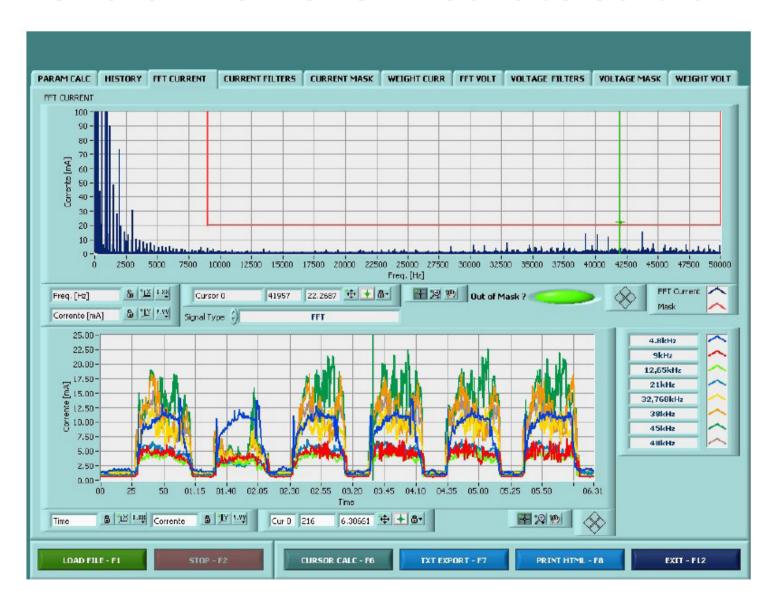

$$A_n = \frac{2}{T} \int_0^T s(t) \cdot \cos(n\omega t) dt$$

$$B_n = \frac{2}{T} \int_0^T s(t) \cdot \sin(n\omega t) dt$$

Serie di Fourier e analisi armonica


Ogni funzione periodica è la sovrapposizione di onde fondamentali o armoniche

Le armoniche hanno frequenze multiple della frequenza fondamentale



Compatibilità elettromagnetica e treni

- L'ampiezza
 dell'armonica che
 corrisponde a 50Hz
 deve essere inferiore a
 una soglia prefissata
- Vengono svolti test per misurare lo spettro armonico del treno

Correnti armoniche misurate su tram

Numeri e binari

- La matematica (e la fisica) è la base dell'ingegneria, anche ferroviaria
- Gli ingegneri bistrattano la matematica approssimando e semplificando ogni volta che possono
- Però gli ingegneri rendono la matematica una scienza viva che aiuta a creare macchine complesse, utili e molto belle

Grazie per l'attenzione