Laboratorio di informatica: il modello predatore-preda di Volterra

L’idea di questo lavoro nasce dal fatto che le scienze naturali sono spesso insegnate in modo completamente separato dalla matematica. Ciò è vero soprattutto per la scuola superiore, ma a volte anche all’università. I modelli matematici che descrivono gli ecosistemi vengono illustrati solo raramente perché ritenuti troppo difficili da comprendere. Secondo noi, però, anche senza entrare in eccessivi dettagli, è possibile illustrare agli studenti alcuni semplici modelli matematici (come ad esempio quello di Lotka-Volterra) ed implementarli con software accessibile ad alunni della scuola superiore (il foglio elettronico o Octave). Una simile attività aiuterebbe molto gli alunni ad avere un’idea di quali siano le basi scientifiche su cui costruire opportune politiche di conservazione degli ecosistemi.

L’articolo fornisce quindi un’introduzione ai modelli ecologici per poi concentrarsi su alcune proposte didattiche di risoluzione delle equazioni del modello di Volterra. Tale modello è considerato la prima pietra su cui si basa l’ecologia matematica, cioè quella disciplina che applica i metodi della matematica alla biologia al fine di fornire metodi d’indagine sia qualitativi che quantitativi utili per comprendere il comportamento degli ecosistemi marini e permettere anche di elaborare opportune politiche per la conservazione della fauna ittica.

 

  1. Introduzione

  2. Modelli di crescita di una popolazione

  3. Il modello predatore-preda di Volterra

  4. Risoluzione del modello di Lotka-Volterra 

  5. Conclusioni

 

 

Qui potete leggere l'articolo interamente.